
ON BIACCESSIBLE POINTS OF THE MANDELBROT SET

SAEED ZAKERI

Abstract. This paper provides a description for the quadratic polynomials

on the boundary of the Mandelbrot set M which are typical in the sense of

harmonic measure. In particular, it is shown that a typical point on the

boundary of M has a unique parameter ray landing on it. Applications of this

result in the study of embedded arcs in M and the lamination associated with

M are given.

1. Introduction

Consider the complex quadratic family {fc : z 7→ z2+c}c∈C and its connectedness
locus M, commonly known as the “Mandelbrot set.” This paper will give a short
proof of the following

Theorem 1. There exists a Borel set X ⊂ ∂M of full harmonic measure such that
for every c ∈ X,

(i) the Julia set Jc = J(fc) is locally connected and full;
(ii) the post-critical orbit {c, fc(c), f◦2c (c), . . .} is evenly distributed with respect

to the harmonic measure on Jc (in particular it is dense in Jc);
(iii) M is locally connected at c, only one parameter ray lands at c, the im-

pression of this ray is trivial, and no other parameter ray contains c in
its impression. Moreover, the dynamic ray of the same angle lands at the
critical value c ∈ Jc.

The statement can be recovered from the work of Bruin and Schleicher [BSc] in
which they use symbolic dynamics to study various combinatorial and topological
aspects of the quadratic family. Modulo the uniqueness of rays in (iii), it also

follows from the work of Smirnov [S1] and Graczyk and Świa̧tek [GS]. Instead of
using their results, here we present a very elementary argument based on Yoccoz’s
local connectivity theorem and the topology of trees in Julia sets.

Recall that c ∈ ∂M is biaccessible if two or more parameter rays land at c. Thus,
we have the following corollary of Theorem 1:

Corollary 2. The set of all biaccessible points in the Mandelbrot set has harmonic
measure zero.

The analogue of this result has been known for all connected quadratic Julia
sets, with the exception of the Julia set of the Chebyshev map f−2 : z 7→ z2 − 2
which is a straight line segment (see [S2], [Z1], [Zd]).

As another corollary, in §4 we show that

Theorem 3. Every embedded arc in the Mandelbrot set has harmonic measure
zero.

1
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In particular, the real slice M∩R = [−2, 1/4] of the Mandelbrot set has harmonic
measure zero. In [Z2], this result came as a byproduct of a completely different
method.

Let ΛM ⊂ D be the lamination associated with M (see §5 for the definition and
compare Fig. 3).

Theorem 4. The area of ΛM is zero and its Hausdorff dimension is two.

The proof, presented in §5, will depend on Theorem 1 and the fact that the set
of angles of the parameter rays which land on the real slice of M has Hausdorff
dimension one [Z2].

Let us point out that the area statement in Theorem 4 bears resemblance to
Thurston’s observation that geodesic laminations on hyperbolic surfaces of finite
area have measure zero (see for example [Th, Chapter 8]). On the other hand, the
dimension statement in Theorem 4 is in sharp contrast with the theorem of Birman
and Series according to which such geodesic laminations have always Hausdorff
dimension one [BS]. It may be worthwhile to further study the metric structure
of laminations that arise in complex dynamics (such as ΛM and those associated
with Julia sets) and develop a theory parallel to geodesic laminations on hyperbolic
surfaces.

2. Preliminaries

First we briefly recall some facts about the conformal geometry of the comple-
ment of a planar continuum; see [A], [Mc], [M1] or [P] for details. Let K ⊂ C
be a non-degenerate continuum. Assume further that K is full in the sense that
its complement C r K is connected. By the Riemann mapping theorem, there

exists a unique conformal isomorphism ψK : C r D
∼=−→ C r K which satisfies

limz→∞ ψK(z)/z > 0. By the external ray at angle t ∈ T = R/Z is meant the
analytic curve RK(t) = ψK({re2πit : r > 1}). We say that RK(t) lands at p ∈ ∂K
if limr→1 ψK(re2πit) = p. According to Carathéodory, ψK extends continuously
to the boundary circle ∂D if and only if K is locally connected, in which case all
external rays land [M1, Theorem 17.14]. Whether or not K is locally connected, a
theorem of Beurling asserts that RK(t) lands for all t outside a set of logarithmic
capacity zero [P, Theorem 9.19].

The (prime-end) impression IK(t) of the ray RK(t) is the set of all z ∈ ∂K for
which there is a sequence {wn} in CrD such that wn → e2πit and ψK(wn)→ z. It is
not hard to show that IK(t) is a non-empty sub-continuum of ∂K, and

⋃

t∈T IK(t) =
∂K. Here is another easy consequence of the definition of impression that we will
need in the proof of Theorem 4 in §5:
(2.1) lim sup

n→∞
IK(tn) ⊂ IK(t) whenever tn → t.

When IK(t) reduces to a point, we say that it is a trivial impression. This happens
precisely when ψK has a continuous extension to e2πit. A ray with trivial impression
necessarily lands, but a landing ray may well have a non-trivial impression.

A point p ∈ ∂K is accessible if it is the landing point of an external ray, and
is biaccessible if at least two external rays land on it. It can be shown that p is
biaccessible if and only if K r {p} is disconnected. Given a subset E ⊂ K, define

(2.2) ψ−1
K (E) = {t ∈ T : RK(t) lands at a point of E}.
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The continuum K decomposes into the disjoint union K = K0∪K1∪K2∪· · ·∪K∞,
where

Kn = {p ∈ K : ψ−1
K (p) has exactly n elements}, 0 ≤ n ≤ ∞.

It is easy to verify that each Kn is a Borel measurable subset of K, and K0 contains
the interior ofK (possibly empty). Note that in terms of this decomposition, a point
is accessible if and only if it belongs to K rK0, and is biaccessible if and only if it
belongs to K r (K0 ∪K1).

The normalized 1-dimensional Lebesgue measure on ∂D ∼= T pushes forward by
the Riemann map ψK to a Borel measure supported on ∂K called the harmonic
measure. In other words, the harmonic measure of a Borel subset E ⊂ K is given by
the length of the set ψ−1

K (E) defined in (2.2). By the theorem of Beurling mentioned
above, the set K0 has harmonic measure zero. The same is true for K3 ∪ · · · ∪K∞
since this union is easily seen to be a countable set [P, Corollary 2.19] and single
points in K have harmonic measure zero by a theorem of F. and M. Riesz [M1,
Theorem A.3]. It follows that K = K1 ∪K2 up to a set of harmonic measure zero.

We now give a brief account of a few basic results in the dynamics of the complex
quadratic family; further details can be found in [DH1], [DH2], [Mc], [M2] and [M3].
Let c ∈ C. The filled Julia set of fc : z 7→ z2 + c, denoted by Kc, is the set of all
points in the plane with bounded forward orbit under fc. The topological boundary
Jc = ∂Kc is called the Julia set of fc. Both sets are non-empty, compact, and
totally-invariant, with Kc being full. An external ray for Kc is called a dynamic
ray. By a cycle of fc is meant a periodic orbit z 7→ fc(z) 7→ · · · 7→ f◦pc (z) = z. The
quantity λ = (f◦pc )′(z) is called the multiplier of this cycle. The cycle is attracting,
repelling, or indifferent according as |λ| < 1, |λ| > 1, or |λ| = 1. A parameter c
is Misiurewicz if the forward orbit under fc of the critical point 0 is finite but not
periodic.

The Mandelbrot set M consists of all parameters c ∈ C for which the (filled) Julia
set of fc is connected. Equivalently, c ∈ M if and only if 0 ∈ Kc. It can be shown
that M is a full continuum. We will use the term parameter ray for an external ray
of M. A parameter c ∈M is called hyperbolic if the corresponding quadratic fc has
a necessarily unique attracting cycle in the plane. Hyperbolic parameters appear
as connected components of the interior of M. The main hyperbolic component
H0 consists of all c ∈ M for which fc has an attracting fixed point. It is the
prominently visible cardioid in any picture of M and is defined by the inequality
|1−

√
1− 4c| < 1 (compare Fig. 3 left). The period of a hyperbolic component H is

the length of the unique attracting cycle of fc for any c ∈ H. There is a canonical

conformal isomorphism λH : H
∼=−→ D which assigns to each c ∈ H the multiplier

of its attracting cycle. The map λH extends to a homeomorphism H
∼=−→ D. The

root of H is by definition the point λ−1
H (1) ∈ ∂H. We call H a satellite component

if its root is on the boundary of another hyperbolic component. There are exactly
two parameter rays of angles θ− < θ+ landing at the root of H which are rational
numbers of the form n/(2p − 1), where p is the period of H. (When H = H0, the
two angles θ− = 0 and θ+ = 1 coincide, and only one ray lands at the root c = 1/4.)
It follows that these two angles have binary expansions of the form

(2.3) θ− = 0. θ0 and θ+ = 0. θ1,
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where θ0 and θ1 are binary words of length p, and the bars indicate infinite repe-
tition. Conversely, if t is a rational of odd denominator, the parameter ray RM(t)
lands at the root of a unique hyperbolic component.

For every hyperbolic component H, denote by ιH : M ↪→ M the Douady-
Hubbard’s tuning map (see [DH1] or [M3]). Then ιH is a topological embedding
which maps H0 onto H, respects roots of hyperbolic components, and maps ∂M

into ∂M. The image MH = ιH(M) is a subset of M homeomorphic to M, with
∂H ⊂ ∂MH ⊂ ∂M. We have MH0

= M, but when H 6= H0, MH is a proper subset
of M often described as the small copy of M growing from H.

The tuning operation also acts on parameter rays. Let θ− = 0. θ0 < θ+ = 0. θ1
be the angles of the two parameter rays landing at the root of a period-p hyperbolic
component H 6= H0 as in (2.3). For any angle t ∈ T with the binary expansion
0. t1t2t3 · · · , define the tuned angle

AH(t) = 0. θt1θt2θt3 · · ·
by concatenating blocks of words of length p > 1. Note that under this tuning
algorithm on angles, a dyadic rational has two distinct images since it has two
different binary representations. The image AH(T) is a self-similar Cantor set and
as such has length zero. In fact, let Λi : T → T (i = 0, 1) be the map defined by
Λi(0.t1t2t3 · · · ) = 0.θit1t2t3 · · · . Then Λi is an affine contraction by a factor 2−p and
the image AH(T) is precisely the invariant set generated by the pair Λ0,Λ1 [Ma].
It can be shown that if RM(t) lands at c ∈M , then the parameter ray RM(AH(t))
lands at the tuned image ιH(c) ∈ MH [D1]. Furthermore, with countably many
possible exceptions, these are the only parameter rays that land on the small copy
MH . As a result,

(2.4) length(ψ−1
M

(MH)) = length(AH(T)) = 0 if H 6= H0.

Finally, a quadratic fc with c ∈ M is simply renormalizable of period p > 1 if
there are topological disks U and V containing 0 such that (i) U is compactly
contained in V ; (ii) f◦p : U → V is a degree 2 branched covering; (iii) 0 ∈ E,
where E is the set of points in U whose forward orbits under f ◦p are contained
in U ; and (iv) the images E, f(E), . . . , f◦p−1(E) do not disconnect one another.
Simply renormalizable quadratics correspond to parameters in small copies of M.
More precisely, if fc is simply renormalizable of period p > 1, then c ∈ MH for
some period-p hyperbolic component H. Conversely, if H is a period-p hyperbolic
component with p > 1, every c ∈ MH (with the exception of the root of H in the
satellite case) gives a quadratic fc which is simply renormalizable of period p [DH1].

3. Proof of Theorem 1

The proof of Theorem 1 begins as follows. The set Mren ⊂ M of parameters c
for which the quadratic fc is simply renormalizable is contained in the countable
union

⋃

H 6=H0
MH of all small copies. Thus,

ψ−1
M

(Mren) ⊂
⋃

H 6=H0

ψ−1
M

(MH).

Since by (2.4) each ψ−1
M

(MH) has length zero, it follows that Mren has harmonic
measure zero.

For each irreducible fraction 0 < p/q < 1 there is a period-q hyperbolic component
Hp/q whose root is λ−1

H0
(e2πip/q) ∈ ∂H0 (see Fig. 3 left for the case p/q = 1/3). The
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two parameter rays landing at this root have angles of the form θ− = n/(2q−1) and
θ+ = (n+1)/(2q−1). For t in the open interval Ip/q = (θ−, θ+) ⊂ T, the parameter

ray RM(t) does not land on ∂H0. It follows that ψ−1
M

(∂H0) ⊂ T r
⋃

0<p/q<1 Ip/q.

Since the intervals Ip/q are disjoint, we obtain

length(ψ−1
M

(∂H0)) ≤ 1−
∑

0<p/q<1

1

2q − 1
.

An easy computation gives
∑

0<p/q<1 1/(2
q − 1) = 1 (compare [D1] or [GM]) and

we conclude that ∂H0 has harmonic measure zero.
Let Mind ⊂ M be the set of parameters c for which fc has an indifferent cycle.

These are precisely the parameters which lie on the boundary of hyperbolic com-
ponents of M, so

Mind = ∂H0 ∪
⋃

H 6=H0

∂H ⊂ ∂H0 ∪
⋃

H 6=H0

MH .

Since each set on the right has harmonic measure zero, it follows that the harmonic
measure of Mind is zero.

Now consider the Borel set Y = ∂Mr (Mren∪Mind) consisting of all c for which
the quadratic fc is non-renormalizable and without indifferent cycles. By the above
discussion, Y has full harmonic measure. According to Yoccoz, for every c ∈ Y the
Julia set Jc is a locally connected full continuum. Moreover, M is locally connected
at c, only finitely many parameter rays land at c, and the dynamic rays of the same
angles land at the critical value c of fc (see [H], [M2], [R]). This statement can be
improved by showing that the parameter rays landing at c have trivial impressions,
and no other ray can contain c in its impression. In the case c is a Misiurewicz
parameter, this is shown by Tan Lei, building upon the earlier work of Douady and
Hubbard [T1]. In the case c is non-Misiurewicz, the sharper statement follows from
Tan Lei’s result and the proof of Yoccoz’s theorem. In fact, Yoccoz constructs a
nested sequence of para-puzzles {Πn} with the following properties:

• Πn is a closed topological disk containing c;
• Πn ∩M is connected;
• ∂Πn ∩M consists of finitely many Misiurewicz parameters; and
• ⋂

Πn = {c}
(compare [R]). Let c belong to some impression IM(t), and assume ∂Πn∩IM(t) 6= ∅
for some n. Since this intersection is contained in ∂Πn∩M, it could only be a finite
set {c1, . . . , ck} of Misiurewicz parameters. Tan Lei’s result would then show that
IM(t) = {cj} for some j. This would imply c = cj , which would contradict the
assumption of c being non-Misiurewicz. Thus, ∂Πn ∩ IM(t) = ∅ and so IM(t) ⊂ Πn

for all n. It follows that IM(t) = {c} and in particular RM(t) lands at c.
Let c ∈ Y so that Jc is locally connected and full. The normalized Riemann map

ψJc
: C r D → C r Jc induces a continuous map ∂D ∼= T → Jc which conjugates

the action of the doubling map t 7→ 2t to fc:

ψJc
(2t) = fc(ψJc

(t)).

If the parameter ray RM(t) lands at c, the dynamic ray RJc
(t) lands at the critical

value c ∈ Jc, and it follows by induction that RJc
(2kt) lands at f◦kc (c) for all k ≥ 0.

Since the harmonic measure on Jc is the push-forward of Lebesgue measure on
T under ψJc

, it follows that the post-critical orbit {c, fc(c), f◦2c (c), . . .} is evenly



6 S. ZAKERI

distributed on Jc whenever the orbit t 7→ 2t 7→ 4t 7→ · · · is evenly distributed on
T. (Recall that a sequence {xn} in a topological space X is evenly distributed with
respect to a probability measure µ if

lim
N→∞

1

N

N
∑

n=1

φ(xn) =

∫

X

φ(x) dµ(x)

for every bounded continuous function φ : X → R) Since the doubling map is
ergodic with respect to Lebesgue measure on the circle, the Ergodic Theorem shows
that there is a full length Borel set B ⊂ T consisting of angles t whose orbits
t 7→ 2t 7→ 4t 7→ · · · are evenly distributed on T. The intersection ψ−1

M
(Y ) ∩ B has

full length, so the Borel set X ⊂ Y which satisfies ψ−1
M

(X) = ψ−1
M

(Y ) ∩ B has full
harmonic measure. Moreover, the preceding remark shows that for each c ∈ X, the
post-critical orbit {c, fc(c), f◦2c (c), . . .} is evenly distributed on Jc, and in particular
is dense in Jc.

So far we have verified all the properties ofX in Theorem 1 except the uniqueness
of rays in (iii). This will be a corollary of the lemma below, which may be of
independent interest:

Lemma 5. Let Jc be locally connected and full. Suppose two or more dynamic rays
land at c. Then there exists a forward invariant finite topological tree T ⊂ Jc which
contains the post-critical orbit {c, fc(c), f◦2c (c), . . .}.

It follows from this lemma that every c ∈ X is the landing point of a unique pa-
rameter ray, for otherwise we could find a finite topological tree T in Jc containing
the post-critical orbit and use the density of this orbit to conclude that the Julia
set Jc = T is a finite tree. The only quadratic with this property is the Chebyshev
map f−2 : z 7→ z2 − 2 which is post-critically finite (see for example [M4, Lemma
B.4] or [Z1]). This contradiction completes the proof of Theorem 1. 2

Proof of Lemma 5. Since Jc is locally connected and full, each pair z, w of distinct
points in Jc can be joined by a unique embedded arc [z, w] = [w, z] in Jc home-
omorphic to the interval [0, 1] ⊂ R. Let β be the fixed point of fc at which the
dynamic ray at angle 0 lands, and let α be the other fixed point. The following
facts can be easily verified (see [Z1] for details and compare Fig. 1):

(3.1) If z ∈ Jc is biaccessible, then f◦kc (z) ∈ [−β, β] for some k ≥ 0;

(3.2) 0 ∈ [−β, β] and α ∈ [−β, 0];

(3.3) fc([α,−α]) = [c, α] and fc([−β, β]) = [c, α] ∪ [α,−α] ∪ [−α, β] = [c, β];

(3.4) if z ∈ [−α, β], then fc(z) ∈ [α, z]; and

(3.5) for every z ∈ Jc, fc([z, α]) ⊂ [fc(z), α] ∪ [α, c].

Let ck = f◦kc (c). The assumption that two rays land at c implies by (3.1) that
cm ∈ [−β, β] for some m ≥ 0. We claim that there exists n ≥ m such that
cn ∈ [c, α]. Otherwise, by (3.3), cn ∈ [−α, β] for all n > m. It follows from (3.4)
that [−α, β] ⊃ [cn+1, β] ⊃ [cn, β] for all n > m. The limit of the monotone sequence
{cn}n>m will then be a fixed point of fc in [−α, β]. Since β is the only fixed point
of fc in [−α, β], this implies cn = β for all n > m. Since c has two rays landing on
it and the forward orbit of c never hits the critical point 0, every cn and hence β
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Figure 1. Some embedded arcs in the Julia set Jc.

must be the landing point of two rays. This is a contradiction since β is the landing
point of the unique ray at angle 0.

So choose n ≥ m such that cn ∈ [c, α], or equivalently [cn, α] ⊂ [c, α]. The union

T =
⋃n−1
k=0 [ck, α] is then a forward invariant finite topological tree. In fact, by

(3.5), fc([ck, α]) ⊂ [ck+1, α] ∪ [α, c] ⊂ T for every 0 ≤ k ≤ n − 1. Since c ∈ T , the
orbit of c is entirely contained in T . 2

4. Embedded arcs in M

In this section we prove Theorem 3 using Theorem 1 and the fact that the
boundary of every interior component of M has harmonic measure zero (Lemma 7
below). The argument is based on the following topological lemma:

Lemma 6. Let K ⊂ C be a full non-degenerate continuum and γ ⊂ K be an
embedded arc with endpoints z, w. Assume there are angles t, s ∈ T such that
IK(t) = {z} and IK(s) = {w}. Then every point of γr {z, w} belongs either to the
closure of an interior component of K, or to the impression of at least two external
rays of K.

Note that the assumption on the endpoints of γ is necessary. For example, the
“comb”

K = [−1, 1] ∪ [0, i] ∪
∞
⋃

n=1

[

± 1

n
,± 1

n
+ i

]

has no interior and the point p = i/2 on the embedded arc γ = [0, i] belongs to
the impression of the unique ray which lands at i (see Fig. 2). Note also that
the lemma is a generalization of the fact that every point of a “dendrite” (i.e., a
locally connected full non-degenerate continuum without interior) is either an end
or biaccessible (compare [Z1, Lemma 3]).

Proof. Assume p ∈ γ r {z, w} does not belong to the closure of any interior com-
ponent of K. The union RK(t)∪ γ ∪RK(s) separates the plane into two connected
components C+ and C−. Take a sequence of open topological disks Dn around p
such that diamDn → 0 and Dn r (RK(t) ∪ γ ∪RK(s)) has two connected compo-
nents D+

n and D−n , labelled so that D+
n ⊂ C+ and D−n ⊂ C− for all n. For each

n, both topological disks D±n intersect C rK, for otherwise one of them would be
contained in the interior of K and p would be in the closure of an interior compo-
nent. Choose sequences z±n ∈ D±n r K and write z±n = ψK(rn exp(2πi t±n )). After
passing to subsequences if necessary, we can assume that t±n → t±. It then follows
from the definition of impression that p ∈ IK(t+) ∩ IK(t−).

Since RK(t±n ) ⊂ C±, we have RK(t±) ⊂ C±. If t+ = t−, it follows that

RK(t+) = RK(t−) ⊂ C+ ∩ C−, so t+ = t− = t or t+ = t− = s. But then
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p

g

Figure 2.

p ∈ IK(t+) ∩ IK(t−) ⊂ IK(t) ∪ IK(s), which implies p = z or p = w. This contra-
dicts our assumption. Thus t+ 6= t−. ¤

Lemma 7. The union of the boundaries of the interior components of M has
harmonic measure zero.

Proof. We show that this union is contained in the harmonic measure zero set
E = ∂H0 ∪

⋃

H 6=H0
MH (see §3). Let W be an interior component of M. If W is

a hyperbolic component, then ∂W ⊂ ∂H0 ∪
⋃

H 6=H0
∂H ⊂ E. Otherwise, W is a

“queer” component. In this case, for every c ∈W the quadratic fc has no indifferent
cycle and the Julia set Jc admits non-trivial deformations, hence has positive area
[Mc, Theorem 4.9]. A theorem of Lyubich and Shishikura then shows that fc is
(infinitely) renormalizable (see [L] or [Mc, Theorem 8.8]). It follows that W is
contained in a small copy MH for some H 6= H0. So, again, ∂W ⊂MH ⊂ E. ¤

Proof of Theorem 3. Let γ ⊂ M be an embedded arc and assume by way of
contradiction that γ has positive harmonic measure. Consider the subset η ⊂ γ
consisting of the parameters which do not belong to the closure of any interior
component of M. By Lemma 7, the harmonic measure of the difference γ r η
is zero, so η has positive harmonic measure. Let X ⊂ ∂M be the set given by
Theorem 1. Since X has full harmonic measure, the intersection η∩X has positive
harmonic measure. Choose three distinct parameters c, c′, c′′ in η ∩X, labelled so
that c′ is between c and c′′ on γ. By Theorem 1(iii), each of these parameters
forms the (trivial) impression of a unique external ray. But Lemma 6 applied to
the segment of γ from c to c′′ shows that c′ must belong to the impression of at
least two rays. This is a contradiction, and the proof is complete. 2

5. The lamination associated with M

We begin with some definitions. A (geodesic) lamination in D is a relatively
closed set Λ ⊂ D decomposed into a disjoint union of complete Poincaré geodesics.
A lamination Λ has a local product structure: Every point of Λ has a neighborhood
U homeomorphic to the unit square (0, 1) × (0, 1) such that Λ ∩ U corresponds
to (0, 1) × τ for some relatively closed set τ ⊂ (0, 1), and such that the geodesic
segments in Λ ∩ U correspond to the horizontal segments (0, 1) × {point} (see for
example [B]). We call U a product neighborhood. Λ is said to be a product lamination
if it can be covered by a single product neighborhood.

An equivalence relation ∼ on T is closed if its graph {(t, s) ∈ T × T : t ∼ s} is
a closed subset of T× T, and is unlinked if any two distinct equivalence classes are
contained in a pair of disjoint intervals. Suppose ∼ is closed and unlinked. Identify
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Figure 3. Left: The Mandelbrot set M with its main hyperbolic

component H0 and the satellite component H1/3 at whose root the

parameter rays at angles 1/7 and 2/7 land. The small copy MH1/3

is a proper subset of the part of M cut off by these rays. Right:

The lamination ΛM associated with the Mandelbrot set.

T with the unit circle ∂D, and form the convex hull (in the Poincaré metric of D)
of each equivalence class of ∼. Take the union of the topological boundaries of all
these convex hulls and define Λ as the intersection of this union with the unit disk
D. It is not hard to check that Λ is a geodesic lamination in D. We refer to it as
the lamination of ∼.

In the case of the Mandelbrot set, define the equivalence relation ∼Q on Q/Z by
declaring t ∼Q s if and only if the parameter rays RM(t) and RM(s) land at the
same point. Extend ∼Q to a relation ∼ on the circle T by taking the closure of the
graph of ∼Q, that is, declare t ∼ s if and only if there are sequences of rational
angles tn → t and sn → s such that tn ∼Q sn for all n. It turns out that ∼ is
an equivalence relation, is closed and unlinked, and for t, s ∈ Q/Z, t ∼ s if and
only if t ∼Q s [D2]. The lamination ΛM of this equivalence relation is called the
lamination associated with M (see Fig. 3 right). Douady and Hubbard have used
ΛM to construct a combinatorial model of M known as the “abstract Mandelbrot
set” (see [DH1] or [D2]).

The following lemma will be used in the proof of Theorem 4:

Lemma 8. Let Λ ⊂ D be a product lamination. If the closure Λ meets ∂D along a
set of length zero, then the area of Λ must be zero.

Proof. Since Λ is a product lamination, it is homeomorphic to (0, 1) × τ for some
relatively closed set τ ⊂ (0, 1). It suffices to prove the lemma when τ is compact;
the general case will then follow by writing Λ =

⋃

Λn, where Λn is the product
sub-lamination of Λ which is homeomorphic to (0, 1)× (τ ∩ [ 1

n , 1− 1
n ]). Assuming
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τ is compact, the closure Λ is homeomorphic to [0, 1] × τ , and Λ ∩ ∂D consists of
two disjoint compact parts τ0 ∼= {0}× τ and τ1 ∼= {1}× τ , both having length zero.

Let J0 and J1 be disjoint open intervals in ∂D containing τ0 and τ1, respectively.

The holonomy h : τ0
∼=−→ τ1 given by following the geodesics in Λ can be extended

to a homeomorphism h : J0

∼=−→ J1 (for example by interpolating linearly on each
component of J0 r τ0). Since both τ0 and τ1 have zero length, given ε > 0 there is
an open neighborhood V ⊂ J0 of τ0 such that length(V ) < ε and length(h(V )) < ε.
Decompose V into the disjoint union of open intervals {In}, so that h(V ) is the
disjoint union of open intervals {h(In)}. Let Un ⊂ D be convex hull of In ∪ h(In)
in the Poincaré metric on the disk. The Euclidean area of the quadrilateral Un is
easily estimated by

area(Un) ≤ C (length(In) + length(h(In))),

where C > 0 is an absolute constant. Since Λ ⊂ ⋃

Un, it follows that

area(Λ) ≤ ∑

area(Un) ≤ C
∑

(length(In) + length(h(In)))

= C (length(V ) + length(h(V ))) ≤ 2Cε,

which shows area(Λ) = 0. ¤

Proof of Theorem 4. Let ∼ be the equivalence relation used in the definition of
ΛM. If t ∼ s and t 6= s, there exist sequences of rational angles tn → t and sn → s
such that tn ∼Q sn for all n. Let zn be the common landing point of RM(tn) and
RM(sn). Then, by (2.1), any accumulation point of the sequence {zn} must belong
to both impressions IM(t) and IM(s); in particular, IM(t)∩ IM(s) 6= ∅. If X ⊂ ∂M

is the set given by Theorem 1, it follows that every equivalence class of ∼ containing
more than one element must be disjoint from ψ−1

M
(X). This means that the set of

endpoints of the geodesics in ΛM is a subset of T rψ−1
M

(X), which has length zero.
Let U be any product neighborhood for ΛM and Λ be the union of all geodesics

in ΛM which intersect U . Then Λ is a product lamination, and by the preceding
paragraph Λ ∩ ∂D has length zero. By Lemma 8, area(Λ) = 0. Since Λ ⊃ ΛM ∩ U ,
we conclude that area(ΛM ∩ U) = 0. Since ΛM can be covered by countably many
such product neighborhoods U , we conclude that area(ΛM) = 0.

Now consider the set ψ−1
M

(R) of angles t for which the parameter ray RM(t)

lands on the real line. It is shown in [Z2] that ψ−1
M

(R) is a nowhere dense set of

Hausdorff dimension 1, and that t ∼ −t for every t ∈ ψ−1
M

(R). It easily follows that

the union over all t ∈ ψ−1
M

(R) of the Poincaré geodesic in D joining t to −t has
Hausdorff dimension 2. Since this union is contained in ΛM, we conclude that the
dimension of ΛM must be 2. 2
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