
BIACCESSIBILITY IN QUADRATIC JULIA SETS

SAEED ZAKERI

Abstract. This paper consists of two nearly independent parts, both of which
discuss the common theme of biaccessible points in the Julia set J of a quadratic
polynomial f : z 7→ z2 + c.

In Part I, we assume that J is locally-connected. We prove that the Brolin mea-
sure of the set of biaccessible points (through the basin of attraction of infinity) in J
is zero except when f(z) = z2−2 is the Chebyshev map for which the corresponding
measure is one. As a corollary, we show that a locally-connected quadratic Julia set
is not a countable union of embedded arcs unless it is a straight line or a Jordan
curve.

In Part II, we assume that f has an irrationally indifferent fixed point α. If z is a
biaccessible point in J , we prove that the orbit of z eventually hits the critical point
of f in the Siegel case, and the fixed point α in the Cremer case. As a corollary, it
follows that the set of biaccessible points in J has Brolin measure zero.

Part I: The Locally-Connected Case

1.1. Introduction. Let f : z 7→ z2 + c be a quadratic polynomial in the complex
plane C. Recall that the filled Julia set of f is

K = {z ∈ C : The orbit {f ◦n(z)}n≥0 is bounded}
and the Julia set of f is the topological boundary of the filled Julia set:

J = ∂K.

Both sets are nonempty and compact, and the filled Julia set is full, i.e., the com-

plement C r K is connected. Let ψ : C r D ≃−→ C r K be the unique conformal
isomorphism, normalized as ψ(∞) = ∞ and ψ′(∞) = 1, which conjugates the squar-
ing map to f :

(1.1) ψ(z2) = f(ψ(z)).

(The inverse ψ−1 is often called the Böttcher coordinate.) By the external ray Rt we
mean the image of the radial line {ψ(re2πit) : r > 1}, where t ∈ T = R/Z is the angle
of the ray. We say that Rt lands at z ∈ J if limr→1 ψ(re

2πit) = z. A point z ∈ J
is called accessible if there exists a simple arc in C rK which starts at infinity and
terminates at z. According to a theorem of Lindelöf (see for example [Ru], Theorem
12.10), z is accessible exactly when there exists an external ray landing at z. We
call z biaccessible if it is accessible through at least two distinct external rays. By a
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theorem of F. and M. Riesz [Mi1], Kr{z} is disconnected whenever z is biaccessible.
It is interesting that the converse is also true. More precisely, if there are at least
n > 1 connected components of K r {z}, then at least n distinct external rays land
at z (see for example [Mc], Theorem 6.6).

Let us denote by γ(t) the radial limit limr→1 ψ(re
2πit). According to a classical

theorem of Fatou (see [Ru], Theorem 11.32), γ(t) exists for almost every t ∈ T in
the sense of the Lebesgue measure. For all such angles t, it follows from (1.1) that γ
conjugates the doubling map to the action of f on the Julia set:

(1.2) γ(2t) = f(γ(t)).

When K, or equivalently J , is locally-connected, it follows from the theorem of
Carathéodory (see [Po], Theorem 2.6) that γ is defined and continuous on the whole
circle. In this case, the surjective map γ : T → J is called the Carathéodory loop.
Evidently the biaccessible points in J correspond to the points where γ fails to be
one-to-one.

Whether or not J is locally-connected, the Lebesgue measure on the circle T pushes
forward by γ to a probability measure µ on the Julia set. Complex analysts call µ
the harmonic measure on J , but in the context of holomorphic dynamics, µ is called
the Brolin measure. It has the following nice properties:

(i) The support of µ is the whole Julia set, with µ(J) = 1.
(ii) µ is invariant under the 180◦ rotation z 7→ −z, i.e., µ(−A) = µ(A) for every

measurable set A ⊂ J .
(iii) µ is f -invariant, i.e., µ(f−1(A)) = µ(A) for every measurable set A ⊂ J .
(iv) µ is ergodic in the sense that for every measurable set A ⊂ J with f−1(A) = A,

we have µ(A) = 0 or µ(A) = 1.

All of these properties are immediate consequences of the corresponding properties
of the Lebesgue measure and the angle-doubling map on the unit circle. Properties
(ii) and (iii) are equivalent to the next property, which will be used repeatedly in this
paper:

(v) µ(f(A)) = 2µ(A) for every measurable set A ⊂ J for which the restriction
f |A is one-to-one.

Brolin proved that with respect to the measure µ the backward orbits of typical
points have an asymptotically uniform distribution [Br]. Lyubich has proved that
µ is the unique measure of maximal entropy log 2. He has also constructed such
invariant measures of maximal entropy for arbitrary rational maps of the Riemann
sphere [Ly].

For z ∈ J , let v(z) denote the number of external rays which land at z. (In
Milnor’s terminology [Mi2], this is called the valence of z.) For 0 ≤ n ≤ ∞ define the
measurable set Jn = {z ∈ J : v(z) = n}. It follows from elementary plane topology
that the union

∪
n≥3 Jn is at most countable (see [Po], Proposition 2.18). On the

other hand, the fact that almost every external ray (with respect to the Lebesgue
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measure on R/Z) lands shows that µ(J0) = 0. Putting these two facts together, we
conclude that J = J1 ∪ J2 up to a set of µ-measure zero. Note that v(f(z)) = v(z)
unless z is the critical point. Therefore, if we neglect the grand orbit of the critical
point which has µ-measure zero, it follows that both J1 and J2 must be f -invariant
subsets of the Julia set. Ergodicity of µ then shows that up to a set of µ-measure
zero, either J = J1 or J = J2.

As an example, for the Chebyshev polynomial z 7→ z2−2, the Julia set is the closed
interval [−2, 2] on the real line. Here every point is the landing point of exactly two
rays except for the endpoints ±2 where unique rays land, so J = J2 is the case.
There are no other known examples of quadratic Julia sets with two rays landing at
almost every point. In fact, as I heard from J. Hubbard and later M. Lyubich, it is
conjectured that a polynomial Julia set has this property only if it is a straight line
segment in which case the map is conjugate to a Chebyshev polynomial, up to sign.
In Part I of this paper, we will confirm this conjecture for quadratic Julia sets which
are locally-connected. Part II, which is an expanded version of [S-Z], considers the
Julia sets of quadratic polynomials with irrationally indifferent fixed points. By a
completely different method we prove the sharper statement that every biaccessible
point in J eventually maps to the critical point in the Siegel case and to the Cremer
fixed point otherwise. As a byproduct, it follows that the set of biaccessible points in
the Julia set has Brolin measure zero.

Addendum (June 1998). After the first version of this paper was circulated as
Stony Brook IMS preprint in January of 1998, two successful attempts were made
in order to settle the above conjecture in its full generality. Jan Kiwi has produced
independently a combinatorial argument in the context of laminations, which is con-
ceptually closer to the ideas of this paper. Stas Smirnov has a completely different
approach based on A. Beurling’s classical estimate for harmonic measures and A.
Zdunik’s dichotomy. Both methods prove a generalization of Theorem 1 of Part I of
the present paper for connected polynomial Julia sets.

Acknowledgments. I am indebted to John Milnor who generously shared his ideas
with me, which play an important role in both parts of the present paper. In partic-
ular, he suggested the idea of working with wakes, which simplified and unified part
of the proof of Theorem 5 of Part II for both the Siegel and Cremer cases. Part II is
an expanded version of a joint note with Dierk Schleicher which was written during
my visit to the Technical University of Münich in July 1997, and covered the Cremer
case with a rather different proof [S-Z]. I would like to thank him for very useful
conversations which led to the joint work, which I have benefited from in Part II as
well.

1.2. Basic Definitions. Let f : z 7→ z2 + c be a quadratic polynomial whose filled
Julia set K is locally-connected. f has two fixed points (1 ±

√
1− 4c)/2 which are

distinct if and only if c ̸= 1/4. If c /∈ [1/4,∞), so that the two fixed points have
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distinct real parts, then by convention the fixed point which is further to the left is
called α and the other fixed point 1 − α is called β. If α is attracting or α = β (⇔
c = 1/4), the Julia set of f is a Jordan curve with a unique external ray landing at
every point. Hence there are no biaccessible points at all and Theorem 1 below is
trivially true. So we may assume that α ̸= β and α is not attracting. It follows that
either α ∈ J , or else α is the center of a fixed Siegel disk for f .

By an embedded arc in K we mean any subset of K homeomorphic to the closed
interval [0, 1] ⊂ R. Since K is locally-connected, for any two points x, y ∈ K there
exists an embedded arc η in K which connects x to y. If K has no interior so that
J = K is full, then η is uniquely determined by the two endpoints x and y. If K does
have interior, however, there is usually more than one choice for η. In what follows,
we will show how to choose a canonical embedded arc between any two points in the
filled Julia set.

Suppose that int(K) is non-vacuous. Every component U of this interior is a
bounded Fatou component whose closure U is homeomorphic to the closed unit disk
D since K is locally-connected. According to Fatou and Sullivan (see for example
[Mi1]), every such component eventually maps to a periodic Fatou component which
is either the immediate basin of attraction of an attracting periodic point, or an at-
tracting petal for a parabolic periodic point, or a periodic Siegel disk. We refer to
these cases simply as hyperbolic, parabolic and Siegel cases. Note that in the hyper-
bolic and parabolic cases the critical point 0 belongs to a central Fatou component
which we denote by U0. Also by our assumption on the α-fixed point, periodic Fatou
components in the hyperbolic and parabolic cases form a cycle of period > 1.

Next, we would like to choose a center c(U) in every bounded Fatou component U
subject only to the following conditions:

(C1) c(−U) = −c(U),
(C2) If U contains the critical value c = f(0), then c(U) = c,
(C3) If U contains the fixed point α, then c(U) = α.

If follows from (C1) that whenever the critical point 0 belongs to the Fatou set,
it is the center of the corresponding Fatou component U0: c(U0) = 0. Also (C3)
corresponds to the case where the α-fixed point is the center of a fixed Siegel disk U .

Given any bounded Fatou component U , there exists a homeomorphism ϕ : U
≃−→

D which is holomorphic in U with ϕ(c(U)) = 0. An arc in U of the form ϕ−1{reiθ :
0 ≤ a ≤ r ≤ b ≤ 1} is called a radial arc. Since ϕ is unique up to post-composition
with a rigid rotation of D, radial arcs in U are well-defined.

Following [D-H], we call an embedded arc I in K regulated if for every bounded
Fatou component U , the intersection I ∩ U is either empty or a point or consists of
radial arcs in U (see also [Do3], where he uses the word “legal” for regulated).
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Lemma 1. Given any two points x, y ∈ K, there exists a unique regulated arc I in
K with endpoints x, y. Furthermore, if η is any embedded arc in K which connects x
to y, then I ∩ J ⊂ η ∩ J .

Proof. Take any embedded arc η in K with endpoints x, y. It is easy to see how one
can deform η to a regulated arc I. Let U be a bounded Fatou component whose
closure intersects η. Choose any parametrization h : [0, 1] → K with η = h([0, 1]),
and define

t0 = inf{t ∈ [0, 1] : h(t) ∈ U},
t1 = sup{t ∈ [0, 1] : h(t) ∈ U}.

In other words, t0 is the first moment η hits U and t1 is the last moment η stays
in U . If t0 ̸= t1, replace the sub-arc of η from h(t0) to h(t1) by the radial arc from
h(t0) to c(U) followed by the radial arc from c(U) to h(t1) (see Fig. 1). If h(t0) and
h(t1) happen to be on the same radial arc, simply connect the two by the radial arc
between them.

η

U h(   )t0 U h (   )t0

η

t1(   )h (   )t1h

(   )c U

Figure 1. Deforming an embedded arc into a regulated arc.

Applying this construction to the intersection with every such Fatou component,
we obtain a regulated arc I with endpoints x, y. Evidently we have the inclusion
I ∩ J ⊂ η ∩ J .

To prove uniqueness, suppose that I and I ′ are both regulated, with the same
endpoints x, y. If I ̸= I ′, then the complement Cr (I ∪ I ′) has a bounded connected
component V . By the Maximum Principle, V is contained in some bounded Fatou
component U . It follows that the boundary ∂V must be contained in a union of at
most four radial arcs in U . But a finite union of radial arcs cannot bound an open
set in U . Therefore, I = I ′. �

The regulated arc I given by the above lemma is denoted by [x, y]. The open arc
(x, y) is defined by [x, y]r{x, y}, and similarly we can define the semi-open arc [x, y).

More generally, given finitely many points x, y, . . . , z inK, there is a unique smallest
connected set [x, y, . . . , z] ⊂ K made up of regulated arcs which contains all of these
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points. In fact this set is always a (finite) topological tree. We call [x, y, . . . , z] the
regulated tree generated by {x, y, . . . , z}. A vertex of this tree with exactly one edge
attached to it is called an end of the tree. A point which is not an end is called an
interior point of the tree. It follows easily from (C1) that

(1.3) [−x,−y, . . . ,−z] = −[x, y, . . . , z]

In the case of three distinct points, [x, y, z] is either homeomorphic to a closed
interval or to a letter Y. The first case occurs if and only if one of the points belongs
to the regulated arc connecting the other two. In the second case, the three points
x, y, z are ends of the tree [x, y, z]. In other words, there is a unique interior point
p ∈ [x, y, z] such that [x, p] ∩ [y, p] = [x, p] ∩ [z, p] = [y, p] ∩ [z, p] = {p} (see Fig. 2).
In this case, we call [x, y, z] a tripod. Point p is called the joint of this tripod.

x y

z

p

Figure 2. A tripod [x, y, z] with joint p.

The regulated trees as defined above are not preserved by the dynamics of f . In fact,
when K has interior, the center of a bounded Fatou component U is not necessarily
mapped by f to that of f(U). Hence regulated arcs in U do not map to regulated
arcs in f(U). This difficulty can be most conveniently overcome by deforming the
polynomial f rel the Julia set into a new map F which respects the centers. To
this end, it suffices to note that for every bounded Fatou component U , there is a
homeomorphism between U and the cone over ∂U which sends c(U) to the cone point
and restricts to the identity map on ∂U . We can define F so as to preserve this cone
structure on various bounded Fatou components. For example, for any component
U and any p ∈ ∂U take the Poincaré geodesic in U between c(U) and p and define
F : U → f(U) so as to map this geodesic isometrically to the unique Poincaré geodesic
between c(f(U)) and f(p) ∈ ∂f(U). (Note that by our assumption f(U) ̸= U unless
U is a fixed Siegel disk for which the α fixed point is the center. So in any case α is
still a fixed point of F .) Apply this construction to every bounded Fatou component
and let F = f anywhere else. The map F will be the required modification of f which
satisfies the following properties:

(F1) F (c(U)) = c(F (U)) for every bounded Fatou component U . In particular, by
(C2), whether or not the critical point 0 belongs to the Fatou set, F (0) =
f(0) = c is always the critical value of f .

(F2) F = f on the closure of the basin of attraction of infinity.
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(F3) F (z) = F (z′) ⇔ z = ±z′.
(F4) α and β are the only fixed points of F .

Also, since the support of the Brolin measure is the Julia set where f and F agree,
it follows that properties (iii) and (v) in section 1.1 also hold for F . In other words,

(F5) µ(F−1(A)) = µ(A) for any measurable set A ⊂ C, and
(F6) µ(F (A)) = 2µ(A) for any measurable set A ⊂ C for which F |A is one-to-one.

Lemma 2. Let x, y, . . . , z ∈ K. Suppose that the critical point 0 is not an inte-
rior point of the tree [x, y, . . . , z]. Then F maps [x, y, . . . , z] homeomorphically to
[F (x), F (y), . . . , F (z)].

In this case, we simply write

F : [x, y, . . . , z]
≃−→ [F (x), F (y), . . . , F (z)].

Proof. First let us show that F restricted to [x, y, . . . , z] is injective. If not, it follows
from (F3) that [x, y, . . . , z] contains a pair ±a of symmetric points. By (1.3), we see
that [a,−a] = −[a,−a]. Hence the 180◦ rotation from the arc [a,−a] to itself must
have a fixed point, namely the critical point 0. But this implies that 0 is an interior
point of [x, y, . . . , z], contrary to our assumption.

Therefore, F restricted to [x, y, . . . , z] is injective. The image tree F ([x, y, . . . , z]) is
evidently connected and contains all of the image points F (x), F (y), . . . , F (z). Since
all the ends of F ([x, y, . . . , z]) are among F (x), F (y), . . . , F (z), we conclude that it
is also minimal. To finish the proof, it is enough to show that the image of every
regulated arc in [x, y, . . . , z] is a regulated arc. But this follows from (F1) since F
preserves the centers hence the radial arcs in bounded Fatou components of f . �

Definition 1. By the spine of the filled Julia set K we mean the unique regulated
arc [−β, β] between the β-fixed point and its preimage −β, which are the landing
points of the unique external rays R0 and R1/2 respectively. By (1.3), the spine is
invariant under the 180◦ rotation z 7→ −z. In particular, the critical point 0 always
belongs to the spine.

Let z ∈ J be a biaccessible point, with a ray pair (Rt, Rs) landing at z and 0 <
t < s < 1. If z /∈ [−β, β], it follows that both t and s satisfy 0 < t < s < 1/2 or
1/2 < t < s < 1. Consider the orbit of the ray pair (Rt, Rs) under f . Since there
exists an integer n > 0 such that 1/2 ≤ 2ns−2nt < 1, the corresponding rays f ◦n(Rt)
and f ◦n(Rs) must belong to different sides of the curve R1/2∪ [−β, β]∪R0 (see Fig. 3).
Therefore f ◦n(z) ∈ [−β, β]. This means that the set B of all biaccessible points in
the Julia set is contained in the union of preimages of the spine:

(1.4) B ⊂
∪
n≥0

f−n[−β, β].
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0

−β

R1/2

Rs

(     )Rs

(     )R t β

R0

Rt
z

f n

f n

nf 

z(  )

Figure 3

1.3. Main Theorem and Supporting Lemmas. Our main goal in Part I is to
prove the following result:

Theorem 1. If the Julia set J of the quadratic polynomial f : z 7→ z2 + c is locally-
connected, then the set of all biaccessible points in J has Brolin measure zero unless f
is the Chebyshev polynomial z 7→ z2 − 2 for which the corresponding measure is one.

By (1.4), it suffices to show that for every non-Chebyshev quadratic, the Brolin
measure µ[−β, β] of the spine is zero.

The proof depends on several lemmas which will be given in this section and sec-
tion 1.4 below. Some of these lemmas are of independent interest in studying the
combinatorial structure of quadratic Julia sets. Unless otherwise stated, the Julia set
J is assumed to be locally-connected.

Lemma 3.

(a) Any point in the Julia set J which belongs to the boundary of two Fatou com-
ponents is necessarily biaccessible.

(b) Let η be any embedded arc in the filled Julia set K and z be a point in η ∩ J
which is not an endpoint of η. Then either z is biaccessible or it belongs to
the boundary of a unique bounded Fatou component.

Proof. (a) Let U and U ′ be two Fatou components with z ∈ ∂U ∩ ∂U ′. Assume that
z is not biaccessible. Then K r {z} is connected, so there exists an embedded arc η
in K between c(U) and c(U ′) which avoids z. By Lemma 1, I ∩ J ⊂ η ∩ J , where
I = [c(U), c(U ′)] = [c(U), z] ∪ [z, c(U ′)] is the unique regulated arc between c(U) and
c(U ′). It follows that η must contain z, which is a contradiction.

(b) If z is not biaccessible, then K r {z} is connected. Hence there exists an
embedded arc η′ in K between the two endpoints of η which avoids z. Take a bounded
connected component V of the complement Cr(η∪η′) which contains z in its closure.
By the Maximum Principle, V must be contained in a bounded Fatou component.
Hence z belongs to the boundary of this bounded Fatou component. Uniqueness
follows from part (a). �
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Corollary 1. Let f : z 7→ z2 + c have locally-connected Julia set. If the α-fixed point
is not attracting and α ̸= β, then neither the β-fixed point nor any of its preimages
can belong to the boundary of a bounded Fatou component of f .

Proof. Assume there exists a bounded Fatou component U with β ∈ ∂U . Then
β ∈ ∂U ∩ ∂f(U). If U = f(U), it must be a fixed Siegel disk by the assumption. But
in this case f |∂U is conjugate to an irrational rotation so it cannot have a fixed point.
Therefore U ̸= f(U). By Lemma 3(a), β will be biaccessible. But this is impossible
since the β-fixed point is always the landing point of the unique ray R0. �
Remark 1. In the non locally-connected case, it is not known if the β-fixed point can
be on the boundary of any bounded Fatou component. In fact, it is not known if
there are examples of quadratic polynomials with a fixed Siegel disk whose boundary
is the whole Julia set. Any such quadratic would provide a counterexample to the
above corollary in the non locally-connected case.

Lemma 4. If x /∈ [−β, β], then [−β, x, β] is a tripod.

Proof. Otherwise, we must have −β ∈ (x, β) or β ∈ (x,−β). In either case, it follows
that −β or β belongs to the interior of an embedded arc in the filled Julia set. But
β is the landing point of the unique ray R0. Since the orbit −β 7→ β does not pass
through the critical point, it follows that −β is also the landing point of the unique
ray R1/2. By Lemma 3(b), either β or −β must be on the boundary of a bounded
Fatou component, which contradicts Corollary 1. �

Here is a definition which will be used repeatedly in all subsequent arguments:

Definition 2. We define a projection π : K → [−β, β] as follows: For x ∈ [−β, β],
let π(x) = x. If x /∈ [−β, β], then [−β, x, β] is a tripod by Lemma 4, and we define
π(x) ∈ (−β, β) to be the joint of this tripod.

Note that π(x) can be described as the unique point in [−β, β] such that for any y
on the spine, [x, π(x)] ⊂ [x, y]. Set theoretically π a retraction from K onto its spine.
However, when K has interior, π is not continuous.

For simplicity, we denote the regulated arc [x, π(x)] by Ix. Since π(−x) = −π(x),
we have I−x = −Ix.

Lemma 5. The α-fixed point belongs to (−β, 0).

Proof. First we prove that α ∈ (−β, β). In fact, if α belonged to J and were off the
spine, then the external rays which land at α would all belong to one side of the curve
R1/2 ∪ [−β, β] ∪ R0. This would contradict the fact that the angle-doubling map on
the circle has no forward orbit which is entirely contained in the interval (0, 1/2) or
(1/2, 1). On the other hand, if α belonged to the Fatou set and were off the spine, then
it would have to be the center of a fixed Siegel disk whose closure by (C3) touches
[−β, β] at the unique point 0. Take the external ray Rt which lands at the critical
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value c. Since the entire orbit of c is on one side of the curve R1/2 ∪ [−β, β]∪R0, the
forward orbit of t under the doubling map must be entirely contained in one of the
intervals (0, 1/2) or (1/2, 1), which is again a contradiction. Therefore, α ∈ (−β, β).

Now suppose that α ∈ (0, β). Then [α, β] ⊂ (0, β]. Hence F : [α, β]
≃−→ [α, β] by

Lemma 2. By (F4), there is no fixed point of F in (α, β). Suppose that [α, β] ⊂ J .
Then f repels all points in [α, β] close to α and β. Since f = F on the Julia set,
the same must be true for F . Hence there has to be an attracting fixed point for F
somewhere in (α, β), which is a contradiction. Therefore [α, β] intersects a bounded
Fatou component U . Passing to some iterate f ◦n(U) = F ◦n(U), we may as well
assume that U is periodic. Since F acts monotonically on [α, β], U must be fixed.
Hence U is a Siegel disk with c(U) = α. Now ∂U intersects [α, β] at a unique
point p which is not the β-fixed point by Corollary 1. Clearly F (p) = p, which is a
contradiction. This shows that α ∈ (−β, 0), and completes the proof. �
Lemma 6. There exists an F -preimage ω of 0 in (−β, α). The other preimage −ω
is then in (−α, β).

Proof. F : [−β, α] ≃−→ [β, α] by Lemma 2 since 0 /∈ (−β, α) by Lemma 5. Again by
Lemma 5 we have 0 ∈ (β, α), which shows there exists a unique ω ∈ (−β, α) with
F (ω) = 0. �

Fig. 4 shows the relative position of the points along the spine.

β

−β

0

α

−α

ω

−ω

Figure 4

Lemma 7. Let c = f(0) = F (0) be the critical value. Then π(c) ∈ [−β, α]. If
π(c) = −β, then c = −β in which case f(z) = z2 − 2.

Proof. By Lemma 2 we have F : [0, β]
≃−→ [c, β] = Ic∪ [π(c), β]. Since −α ∈ [0, β], by

(F3) and (F4) we must have F (−α) = α ∈ [c, β]. This is possible only if α ∈ [π(c), β],
which is equivalent to π(c) ∈ [−β, α] (see Fig. 5).

If π(c) = −β, then c = −β by Lemma 4. It is easy to see that z 7→ z2 − 2 is the
only quadratic polynomial with the critical orbit 0 7→ c 7→ β. �

Lemma 8. Suppose that f is not the Chebyshev polynomial. Let f(ξ) = F (ξ) =
−β. Then ξ does not belong to the spine [−β, β]. Furthermore, π(ξ) ∈ [−α, α] and
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β

−β

0

α

−α

π(  )

I

c

c

c

Figure 5

F (π(ξ)) = π(c), with

c ∈ [−β, β] ⇔ π(ξ) = 0.

Proof. First suppose that π(ξ) ̸= 0. Replacing ξ by −ξ if necessary, we may assume

that π(ξ) ∈ (0, β). Then F : [ξ, β]
≃−→ [−β, β], hence −α ∈ [ξ, β] which implies that

−α ∈ [π(ξ), β], or equivalently, π(ξ) ∈ (0,−α]. Also, since 0 /∈ [ξ, β], c cannot belong
to the spine [−β, β]. By Lemma 7, π(c) ∈ (−β, α]. By Lemma 2 the set [ξ, 0, β]
maps homeomorphically to the tripod [−β, c, β], hence it must also be a tripod, with
ξ /∈ [−β, β], and with the joint π(ξ) mapped to π(c) by F (see Fig. 6).

Now suppose that π(ξ) = 0. Then by a similar argument, the set [ξ, 0, β] = [ξ, β]
still maps homeomorphically to the spine [−β, β] since it does not contain a pair of
symmetric points about the origin. In particular, c must belong to the spine. By
Lemma 7, c = π(c) ∈ (−β, α]. �

β

−β

0

α

−α

π(  )

I

ξ

−ξ

π(ξ)

−π(ξ)

Iξ−

I
ξ

c

c

c
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Corollary 2. F maps [0,±π(ξ)] to Ic and ±Iξ to [−β, π(c)] homeomorphically (see
Fig. 6).

Thus in all non-Chebyshev cases we have the situation illustrated in Fig. 6 (ex-
cept that Ic may collapse to a point ⇔ [−π(ξ), π(ξ)] may collapse to a point, or
alternatively π(c) may coincide with α). Here

±ξ F7→ −β F7→ β,

±π(ξ) F7→ π(c),

and
±ω F7→ 0

F7→ c,

where ω lies somewhere between −β and α.

Lemma 9. Suppose that f is not the Chebyshev polynomial. Then the Brolin measure
µ[−β, β] of the spine is zero if and only if µ(Ic) = 0.

Note that the condition µ(Ic) = 0 is trivially satisfied if c = π(c) belongs to the
spine. The latter happens, for example, when the Julia set of f(z) = z2+c with c ∈ R
is full. When the Julia set is full, it is conjectured that the critical value belongs to
the spine if and only if c is real.

Proof. By Lemma 8, for one preimage ξ of −β, we have π(ξ) ∈ [0,−α], and then
the other preimage −ξ satisfies π(−ξ) ∈ [α, 0]. For simplicity, let z0 = π(ξ) and
zn = F ◦n(z0). It follows from Corollary 2 that

(1.5) F−1([−β, β] ∪ Ic) = [−β, β] ∪ Iξ ∪ −Iξ.
By property (ii) in section 1.1 and (F5), we have

(1.6) µ(Iξ) = µ(−Iξ) =
1

2
µ(Ic).

Note that z1 = π(c) ∈ (−β, α] by Lemma 8 and Lemma 7. By Corollary 2, (F6) and
(1.6),

(1.7) µ[−β, z1] = µ(F (Iξ)) = 2µ(Iξ) = µ(Ic).

If µ[−β, β] = 0, then µ[−β, z1] = 0, hence µ(Ic) = 0 by (1.7). Conversely, if µ(Ic) = 0,
then µ[−β, z1] = 0. To prove µ[−β, β] = 0, we distinguish two cases:

•Case 1. z1 ∈ [ω, α]. Then µ[−β, ω] ≤ µ[−β, z1] = 0. Hence µ[0, β] = 2µ[−β, ω] =
0, which by symmetry implies µ[−β, β] = 0.

•Case 2. z1 ∈ (−β, ω). Then z2 = F (z1) ∈ F (−β, ω) = (0, β) and µ[z2, β] =
2µ[−β, z1] = 0. If z2 ∈ [0,−ω], then µ[−ω, β] = 0 and it follows by an argument
similar to Case 1 that µ[−β, β] = 0. So let us assume that z2 ∈ (−ω, β). We can
repeat the above argument by considering z3 = F (z2) ∈ (0, β). If z3 ∈ [0,−ω], we
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have µ[−β, β] = 0, otherwise z3 ∈ (−ω, β) and we continue. If this process never
stops, it follows that zn ∈ (−ω, β) and (zn+1, β] ⊃ [zn, β] for all n. The limit of the
monotone sequence {zn} will then be a fixed point of F in (−ω, β), which contradicts
(F4). �

1.4. The Proof. The idea of the proof of Theorem 1 is as follows: We consider the
n-th iterate of c = f(0) = F (0), cn = F ◦n(c). Under the assumption µ(Ic) > 0, we
show that cn cannot belong to the spine and the Brolin measure of the arc Icn tends
to infinity as n → ∞, which is clearly impossible since µ(J) = 1. Hence we must
have µ(Ic) = 0. By Lemma 9, this proves the theorem.

Definition 3. Let I1 and I2 be two regulated arcs in the filled Julia set K. We say
that I1 and I2 overlap if the intersection I1 ∩ I2 contains more than one point. It
follows that I1 ∩ I2 is a non-degenerate regulated arc I in K. We often say that I1
and I2 overlap along I.

It is not hard to check that for x, y ∈ K r [−β, β], the arcs Ix and Iy overlap if
and only if x and y belong to the same connected component of K r [−β, β]. In
particular, we must have π(x) = π(y).

Lemma 10. Let x ∈ K r [−β, β]. Then one and only one of the following cases
occurs, as illustrated in Figures 7, 8, 9:

(a) Ix and Iξ (or −Iξ) overlap along an arc Iy. Then F maps [x, y] homeomor-
phically to IF (x) = [F (x), F (y)].

(b) π(x) ∈ (−π(ξ), π(ξ)). Then F maps Ix homeomorphically to the arc F (Ix) =
[F (x), F (π(x))]. In this case, IF (x) and Ic overlap along IF (π(x)) = [F (π(x)), π(c)].

(c) π(x) /∈ (−π(ξ), π(ξ)) and Ix and ±Iξ do not overlap. Then F maps Ix home-
omorphically to IF (x).

Proof. (a) If x ∈ Iξ or −Iξ, then y = x and the result it trivial. Otherwise,
[ξ, x, π(x) = ±π(ξ)] maps homeomorphically to [−β, F (x), π(c)] (see Fig. 7). Hence
F (y) = π(F (x)) and the result follows.

(b) If π(x) ∈ (−π(ξ), π(ξ)), then F (π(x)) ∈ Ic r {π(c)}, hence IF (x) and Ic overlap
along IF (π(x)) (see Fig. 8).

(c) Since π(x) /∈ (−π(ξ), π(ξ)), F (π(x)) ∈ [−β, β]. So the claim is proved once
we show that π(F (x)) = F (π(x)). If these two points are distinct, then the non-
degenerate arc I = [π(F (x)), F (π(x))] ⊂ [−β, β] is contained in [F (x), F (π(x))] (see
Fig. 9). Hence F−1(I) will be a non-degenerate arc in Ix ∩ Iξ or Ix ∩ −Iξ, which
contradicts our assumption. �

Let us put m = µ(Ic). By (1.6), we have µ(±Iξ) = m/2.

Corollary 3. If x ∈ K r [−β, β] and µ(Ix) ≥ 2m, then µ(IF (x)) ≥
3

2
µ(Ix).
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Proof. By Lemma 10 one and only one of the cases (a)-(c) occurs. In case (b),
we have µ(IF (x)) = µ(F (Ix)) + µ(IF (π(x))) ≥ µ(F (Ix)) = 2µ(Ix) and in case (c),
µ(IF (x)) = 2µ(Ix). In case (a),

µ(IF (x)) = µ[F (x), F (y)] = 2µ[x, y]
= 2(µ(Ix)− µ(Iy))
≥ 2(µ(Ix)− µ(±Iξ))
= 2µ(Ix)−m
≥ (3/2)µ(Ix),

which proves the corollary. �

Proof of Theorem 1. Consider the orbit of the critical value {c = c0, c1, c2, . . .}, where
cn = F ◦n(c). Let m = µ(Ic) > 0, and apply Lemma 10 to the point x = c. Clearly
the only possible cases are (a) and (c), since π(c) /∈ (−π(ξ), π(ξ)).

In case (c) we obtain the estimate µ(Ic1) ≥ 2m. This, by repeated application of
Corollary 3, will lead to the estimate µ(Icn+1) ≥ (3/2)nµ(Ic1) which tends to infinity
as n→ ∞ and therefore is impossible.
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In case (a), Ic and −Iξ overlap along some Iy with F (y) ∈ (−β, π(c)) and µ(Ic1) =
µ[c1, F (y)] = 2µ[c, y] ≥ m. Apply Lemma 10 this time to x = c1. Note that the
only possible case is (c), since π(c1) ∈ [−β, π(c)). This gives the estimate µ(Ic2) =
2µ(Ic1) ≥ 2m. Hence successive applications of Corollary 3 will give the estimate
µ(Icn+1) ≥ (3/2)nµ(Ic2), which again contradicts the fact that the Brolin measure of
the Julia set is finite.

The contradiction shows that m = µ(Ic) must be zero, and this completes the proof
of Theorem 1 by Lemma 9. 2

1.5. Further Discussion. Finally, we consider the following result, which is a con-
sequence of Theorem 1 as well as the fact that the Julia set has no compact forward-
invariant proper subsets of positive Brolin measure.

Theorem 2. Let f : z 7→ z2+c be a quadratic polynomial with locally-connected filled
Julia set K. If we exclude the Chebyshev case and the cases where the α-fixed point
of f is attracting or α = β, then every embedded arc in K has Brolin measure zero.

The exceptional cases correspond respectively to c = −2 where the Julia set is a
straight line segment, c in the “main cardioid” of the Mandelbrot set where the Julia
set is a quasi-circle, and c = 1/4 where the Julia set is a Jordan curve but not a
quasi-circle. Roughly speaking, the theorem says that in any other case, embedded
arcs are buried in the filled Julia set so that they are almost invisible from the basin
of infinity.

We make the following elementary observation for the proof:

Lemma 11. Let A ⊂ J be forward-invariant under f , i.e., f(A) ⊂ A. Then either
µ(A) = 0 or µ(A) = 1. In particular, if A is compact and A ̸= J , then µ(A) = 0.

Proof. Let γ : T → J be the Carathéodory loop and E = γ−1(A). Then E is forward-
invariant under the doubling map d : T → T defined by d(t) = 2t (mod 1). We prove
that ℓ(E) = 0 or ℓ(E) = 1, where ℓ denotes the Lebesgue measure on T. Let ℓ(E) > 0
and let x be a point of density of E. Given an ε > 0, we can find an n > 0 and an
interval S ⊂ T centered at x such that ℓ(S) = 2−n and ℓ(S∩E) ≥ (1− ε)ℓ(S). Apply
the n-th iterate d◦n on S and use d◦n(E) ⊂ E to estimate

1− ε ≤ 2nℓ(S ∩ E) = ℓ(d◦n(S ∩ E)) ≤ ℓ(T ∩ E) = ℓ(E).

Since this is true for every ε > 0, we must have ℓ(E) = 1. �
Corollary 4. Still assuming that K is locally-connected, the Brolin measure of the
union of the boundaries of bounded Fatou components of f is zero unless the α-fixed
point is attracting or α = β in which case the corresponding measure is one.

Proof. Since every bounded Fatou component eventually enters a cycle of Fatou com-
ponents of the form U1 7→ U2 7→ . . . 7→ Up 7→ U1, it suffices to prove that µ(A) = 0,
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where A =
∪p

j=1 ∂Uj. This set is compact and forward-invariant under f , so by

Lemma 11 if µ(A) > 0, then A = J must be the case. But this implies that f has
only p bounded Fatou components. It is easy to see that this can happen only if
p = 1, in which case the component is either the immediate basin of attraction for an
attracting fixed point or the attracting petal for a parabolic fixed point. �

As an illustrative example, consider a quadratic polynomial f whose α-fixed point
is the center of a Siegel disk U with rotation number θ of constant type (an example
is provided by f : z 7→ z2 − 0.3905408 − 0.5867879i, where θ = (

√
5 − 1)/2 is the

golden mean). By [Pe], the filled Julia set is locally-connected. The critical point
0 ∈ ∂U is the landing point of exactly two rays (Rs, Rs+1/2), where

(1.8) s =
∑

0<p/q<θ

2−(q+1).

Since the orbit of 0 is dense on ∂U , the set of angles t for which γ(t) ∈ ∂U coincides
with the closure of the orbit of s under the doubling map on the circle. This set is
known to be an invariant Cantor set C of measure zero in the interval [s, s+1/2] ⊂ T
[B-S]. It follows that the set of all t for which γ(t) belongs to the boundary of a
bounded Fatou component is the countable union of Cantor sets consisting of C and
all its preimages under the doubling map. This set has Lebesgue measure zero, hence
the union of the boundaries of all bounded Fatou components will have Brolin mea-
sure zero.

Proof of Theorem 2. Let η ⊂ K be any embedded arc. Let B be the set of bi-
accessible points in J and B′ be the set of all points in J which belong to the
boundary of a bounded Fatou component. By Theorem 1 and Corollary 4, we have
µ(B) = µ(B′) = 0. On the other hand, by Lemma 3(b), every z ∈ η ∩ J is either an
endpoint or it belongs to B ∪B′. Hence, µ(η) = µ(η ∩ J) ≤ µ(B ∪B′) = 0. 2

Corollary 5. A locally-connected quadratic Julia set is not a countable union of
embedded arcs unless it is a straight line or a Jordan curve.

Part II: The Siegel and Cremer Cases

2.1. Introduction. Consider a quadratic polynomial

(2.1) f : z 7→ z2 + c

in the complex plane C. A fixed point z = f(z) is called indifferent if the multiplier
λ = f ′(z) has the form e2πiθ, where the rotation number θ belongs to R/Z. We call z
irrationally indifferent if θ is irrational so that λ is on the unit circle but not a root
of unity.
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Let z be an irrationally indifferent fixed point of f . When f is holomorphically
linearizable about z, we call z a Siegel fixed point. On the other hand, when z is
non-linearizable, it is called a Cremer fixed point.

The two fixed points α and β have multipliers λ = 2α and 2 − λ = 2β. It follows
that only the α-fixed point can be indifferent. The critical value parameter c is then
given by

c = λ(2− λ)/4.

Therefore, the set of all quadratic polynomials which have an indifferent fixed point
is a cardioid in the c-plane parametrized by λ on the unit circle. The set of quadratic
polynomials with an irrationally indifferent fixed point is then a dense subset of this
cardioid. We call a quadratic polynomial f in (2.1) Siegel or Cremer if the α-fixed
point is irrationally indifferent and has the corresponding property.

It follows from classical Fatou-Julia theory that the filled Julia set K and the Julia
set J = ∂K are connected when f is Siegel or Cremer. Every connected component
of the interior of K is a topological disk called a bounded Fatou component of f . In
the Siegel case, the component S of the interior of K containing the fixed point α is
called the Siegel disk of f on which the action of f is holomorphically conjugate to
the rigid rotation z 7→ e2πiθz.

Since f(z) = f(−z) by (2.1), J is invariant under the 180◦ rotation τ : z 7→ −z. If
U is an open Jordan domain in the plane such that U ∩ τ(U) = ∅, it follows that f
is univalent in some Jordan domain V containing the closure U .

According to Fatou and Sullivan, every bounded Fatou component must eventually
map to the immediate basin of attraction of an attracting periodic point, or to an
attracting petal for a parabolic periodic point, or to a periodic Siegel disk for f [Mi1].
On the other hand, by [Do1] a polynomial of degree d ≥ 2 can have at most d − 1
non-repelling periodic orbits. It follows that in the Siegel case, every bounded Fatou
component eventually maps to the Siegel disk S centered at α. In the Cremer case,
however, we simply conclude that K has no interior, so that K = J .

2.2. Arithmetical conditions. It is well-known that the behavior of orbits near the
indifferent fixed point is intimately connected to the arithmetical properties of the
rotation number 0 < θ < 1. There are certain classes of irrational numbers which
are of special interest in holomorphic dynamics and in this paper we will be working
with some of them. Let

θ =
1

a1 +
1

a2 +
1
. . .
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be the continued fraction expansion of θ, where all the ai are positive integers, and

pn
qn

=
1

a1 +
1

a2 +
1

. . . +
1

an

be the n-th rational approximation of θ. We say that

• θ is of constant type (we write θ ∈ CT) if supn an < +∞.
• θ is Diophantine (we write θ ∈ D) if there exist positive constants C and ν
such that for every rational number 0 ≤ p/q < 1, we have |θ − p/q| > C/qν .
This condition is equivalent to supn(log qn+1/ log qn) < +∞.

• θ is of Yoccoz type (we write θ ∈ H) if every analytic circle diffeomorphism
with rotation number θ is analytically linearizable. (An explicit arithmetical
description of H is given by Yoccoz although it is not easy to explain; see
[Yo2].)
A closely related condition, which we denote by H′, is defined as follows:

θ ∈ H′ if and only if every analytic circle diffeomorphism with rotation number
θ, with no periodic orbit in some neighborhood of the circle, is analytically
linearizable [PM1].

• θ is of Brjuno type (we write θ ∈ B) if it satisfies the condition

(2.2)
∞∑
n=1

log qn+1

qn
< +∞,

We have the proper inclusions H ⊂ H′ and CT ⊂ D ⊂ H ⊂ B. It is not hard to show
that D, hence H,H′ and B, are sets of full measure in R/Z.

By the theorem of Brjuno-Yoccoz [Yo1], f is a Siegel quadratic polynomial if and
only if θ ∈ B.

2.3. Basic results. Very little is known about the topology of the Julia set of f in
the Siegel or Cremer case or the dynamics of f on its Julia set. The following theorem
summarizes the basic results in the Cremer case:

Theorem 3. Let f in (2.1) be a Cremer quadratic polynomial, so that θ /∈ B. Then

(a) The Julia set J cannot be locally-connected [Su].
(b) Every neighborhood of the Cremer fixed point α contains infinitely many re-

pelling periodic orbits of f [Yo1].
(c) The critical point 0 is recurrent, i.e., it belongs to the closure of its orbit

{f ◦n(0)}n>0 [Ma].
(d) The critical point 0 is not accessible from Cr J [Ki].
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See also [Sø] for the so-called “Douady’s non-landing theorem,” which says that
for a generic Cremer quadratic polynomial there is an external ray which accumulates
on the Cremer fixed point and its preimage. Perez-Marco has shown that for every
Cremer quadratic polynomial there exists an external ray whose prime-end impression
contains the Cremer fixed point and its preimage [PM2]. Both results shed some light
on why the Julia set of a Cremer quadratic polynomial fails to be locally-connected.

In the Siegel case, we know a little bit more, but still the situation is far from being
fully understood.

Theorem 4. Let f in (2.1) be a Siegel quadratic polynomial, so that θ ∈ B. Let S
denote the Siegel disk of f . Then

(a) If θ ∈ CT, then the boundary ∂S is a quasi-circle which contains the critical
point 0 [Do2]. The Julia set J is locally-connected and has measure zero [Pe].

(b) If θ ∈ H, then 0 ∈ ∂S [He1].
(c) For some rotation numbers θ ∈ B rH, the entire orbit of 0 is disjoint from

∂S [He2]. In this case, J cannot be locally-connected [Do2].
(d) For every θ ∈ B, the critical point 0 is recurrent.

Part (b) was proved by Herman for θ ∈ D, but his proof works equally well for
θ ∈ H. We will include a very short proof for the latter case in section 2.4. The proof
of part (d) goes as follows: By classical Fatou-Julia theory, every point in ∂S is in
the closure of the orbit of 0 [Mi1], so recurrence is immediate if 0 ∈ ∂S. If 0 /∈ ∂S
and 0 is not recurrent, then by [Ma] the invariant set ∂S is expanding, i.e., there is
a constant λ > 1 and a positive integer k such that |(f ◦k)′(z)| > λ for all z ∈ ∂S. It
follows that the same inequality holds over some neighborhood U of ∂S, and we may
as well assume that U ∩S is invariant. Take a small disk V b U ∩S. Since f ◦k|U∩S is
holomorphically conjugate to the rigid rotation z 7→ e2πikθz, there exists a sequence
nj → ∞ such that f ◦knj converges uniformly to the identity map on V as j → ∞.
But this is impossible since for all z ∈ V , |(f ◦knj)′(z)| > λnj → ∞.

Comparing the two theorems, we notice that the Cremer case and the Siegel case
with 0 /∈ ∂S share many properties. This is a general philosophy which is partially
explained by the theory of “hedgehogs” introduced recently by Perez-Marco [PM1]
(see section 2.4 below).

Inspired by this similarity, one expects the following to be true:

Conjecture. Let f be a Siegel quadratic polynomial and 0 /∈ ∂S. Then

(i) Every neighborhood of ∂S contains infinitely many repelling periodic orbits of
f .

(ii) The critical point 0 is not accessible from CrK.
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By an argument similar to [Ki], one can show that (i) implies (ii) (see also Proposi-
tion 3).

2.4. Hedgehogs. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Let
U be a simply connected domain with compact closure which contains the closure
of the Siegel disk S in the linearizable case, or the indifferent fixed point α in the
non-linearizable case. Suppose that f is univalent in a neighborhood of the closure
U . Then there exists a set H = HU with the following properties:

(i) α ∈ H ⊂ U,
(ii) H is compact, connected and full,
(iii) ∂H ∩ ∂U is nonempty,
(iv) ∂H ⊂ J,
(v) f(H) = H.

Note that H has nonempty interior if and only if α is linearizable. In this case our
assumption that f is univalent on U implies that the critical point is off the boundary
of the Siegel disk. Clearly H ⊃ S.

Such an H is called a hedgehog for the restriction f |U : U → C. See Fig. 10(a) for
the Cremer case and (b) for the Siegel case. (We would like to emphasize that the
topology of a hedgehog is infinitely more complicated than anything we can possibly
sketch!) The existence of such totally invariant sets is proved by Perez-Marco [PM1].

Note that in the Siegel case, one can get totally invariant sets H with the above
properties (i)-(v) even if ∂U intersects the closure S. But in this case the existence
of H is not hard to show because we can simply take H as S or a compact invariant
piece with analytic boundary inside the Siegel disk (see Fig. 10(c) and (d)).

H H

H=S

(a) (b) (c) (d)

S

H

UUUU

Figure 10

Hedgehogs turn out to be useful because of the following nice construction: Uni-
formize the complement CrH by the Riemann map ϕ : CrH → CrD and consider
the induced map g = ϕ ◦ f ◦ ϕ−1 which is defined (by (v) above) and holomorphic
in an open annulus {z ∈ C : 1 < |z| < r}. Use the Schwarz Reflection Principle to
extend g to the annulus {z ∈ C : r−1 < |z| < r}. The restriction of g to the unit
circle T will then be a real-analytic diffeomorphism whose rotation number is exactly
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1
2πi

log f ′(α) = θ ∈ R/Z (see [PM1]). This allows us to transfer results from the more
developed theory of circle diffeomorphisms to the less explored theory of indifferent
fixed points of holomorphic maps.

Using the above construction, it is not hard to prove the following fact (see [PM2]):

Proposition 1. Let p be a point in a hedgehog H which is biaccessible from outside
of H. Then p ∈ ∂S in the Siegel case and p = α in the Cremer case.

In fact, let us assume that we are in the Siegel case and p /∈ ∂S. Then one can find
a simple arc γ in C rH which starts and terminates at p and does not encircle the
indifferent fixed point α. Let D be the bounded connected component of Cr (H∪γ).
Evidently D is disjoint from S. The topological disk D′ = ϕ(D) is bounded by the
simple arc ϕ(γ) and an interval I on the unit circle. (The fact that ϕ(γ) actually lands
from both sides on the unit circle follows from general theory of conformal mappings;
see for example [Po], Proposition 2.14.) Since g has irrational rotation number on the

unit circle T, for some integer N we have
∪N

i=0 g
◦i(I) = T. By choosing γ close enough

to H, we can assume that g, g◦2, · · · , g◦N are all defined on D′ and
∪N

i=0 g
◦i(D′) con-

tains an entire outer neighborhood of T. It follows that
∪N

i=0 f
◦i(D) covers an entire

deleted neighborhood of H. Therefore, some iterate f ◦i(D) intersects ∂S. Since f ◦i

is univalent on D ∪ S, it follows that D ∩ ∂S ̸= ∅, which contradicts our assumption.
The proof in the Cremer case is similar.

The construction of the circle maps associated with hedgehogs as described above
gives short proofs for some interesting facts. As the first example, we prove that there
are no periodic points on ∂S when the critical point 0 is off this boundary, a fact that
will be used in the proof of Theorem 5. One can find a proof of this result in [PM1]
for indifferent germs, but the fact that we are working with polynomials makes the
proof even shorter.

First we need the following lemma:

Lemma 12. Let f be a Siegel quadratic polynomial as in (2.1) whose critical point
0 is off the boundary ∂S of the Siegel disk. Then the closure S is full and f acts
injectively on it.

It is reasonable to speculate that the closure of any bounded Fatou component for
a quadratic polynomial is full. This is known to be true except when the polynomial
has a periodic Siegel disk S with the critical point on its boundary ∂S. In this case, we
do not know if ∂S can separate the plane into more than two connected components
(a so-called “Lakes of Wada” example in plane topology [H-Y]).

Proof. (Compare [He1], [PM2]) Since f(z) = f(−z) for all z, if f is not injective on
S, there must be a pair of symmetric points p and −p = τ(p) in ∂S. Since J has a
180◦ rotational symmetry, f−1(S) = S ∪ τ(S). So p and −p also belong to ∂(τ(S)).
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Consider the connected component V of C r (S ∪ τ(S)) which contains the critical
point 0. Since V is open and ∂V ⊂ J , it follows from the Maximum Principle that V
has to be a bounded Fatou component of f . This contradicts the fact that 0 ∈ J .

Let us now assume that S is not full and let U be a bounded component of Cr S.
Since ∂U ⊂ ∂S ⊂ J , it follows again from the Maximum Principle that U has to be a
bounded Fatou component of f , hence it eventually maps to S, i.e., f ◦n(U) = S for
some n ≥ 1. Therefore f ◦n−1(U) = τ(S). But the boundary of f ◦n−1(U) is a subset
of ∂S, which implies that the common boundary ∂S ∩ ∂(τ(S)) is nonempty. This
contradicts the fact that f |∂S is injective. �

Proposition 2. Let f be a Siegel quadratic polynomial whose critical point 0 is off
the boundary ∂S. Then there are no periodic points on ∂S.

Proof. By the above lemma S is full and f acts injectively on it, so we can find
a Jordan domain U containing S such that f |U is univalent. Consider a hedgehog
H = HU for the restriction f |U . Clearly H ⊃ S. Suppose that there is a periodic
point on ∂S which is necessarily repelling. Then there exists a rational external
ray R landing at this point, hence f ◦n(R) = R for some n ≥ 1 (see for example
[Mi1]). Consider the induced map g = ϕ ◦ f ◦ ϕ−1 as described above, and look at
the arc γ = ϕ(R). It is a standard fact that γ has to land at some point p ∈ T
[Po] and g◦n(p) = p. But this contradicts the fact that the rotation number of g is
irrational. �

In the second application, we prove Theorem 4(b): We want to show that θ ∈ H

implies 0 ∈ ∂S. If not, by Lemma 12 S is full and f |S is univalent. Consider a
Jordan domain U , a hedgehog HU and the induced circle map g as in the above
proof. Since the rotation number of g belongs to H, g is analytically linearizable.
The linearization can be extended holomorphically to an annulus neighborhood of
the unit circle T. Pulling this neighborhood back, we find a larger domain containing
S on which f is linearizable, which contradicts the definition of a Siegel disk.

As a final application, we prove the following:

Proposition 3. Let f be a Siegel quadratic polynomial whose critical point 0 is off
the boundary ∂S. If θ ∈ H′, the critical point 0 is not accessible from CrK.

Proof. Consider the hedgehog construction as in the proof of Proposition 2 or the
above proof for Theorem 4(b). If there are no periodic orbits in some neighborhood
of ∂S, it follows that g has no periodic orbit in some neighborhood of T either.
Since the rotation number of g is θ ∈ H′, g has to be linearizable. Now we can
get a contradiction as in the above proof for Theorem 4(b). So every neighborhood
of ∂S must contain infinitely many periodic orbits. The fact that this implies non-
accessibility of 0 follows easily by an argument similar to [Ki]. �
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2.5. Wakes. To see the behavior of rays near infinity, it will be convenient to add a
circle at infinity T∞ ≃ R/Z to the complex plane to obtain a closed disk c⃝ topologized
in the natural way. We denote the point limr→∞ re2πit on T∞ simply by ∞ · e2πit.
The action of f in (2.1) on the complex plane extends continuously to c⃝ by

(2.3) f(∞ · e2πit) = ∞ · e4πit,
which is just the doubling map on T∞. Note that the symmetry f(z) = f(−z) also
extends to c⃝ if we define −∞ · e2πit = ∞ · e2πi(t+1/2).

Definition. Let f be a quadratic polynomial as in (2.1) with connected Julia set.
Let z ̸= α be a biaccessible point in J with two distinct rays R and R′ landing on it.
We call (R,R′) a ray pair. By the Jordan Curve Theorem, R∪R′∪{z} cuts the plane
into two open topological disks. By the wake W of the ray pair (R,R′) we mean the
connected component of C r (R ∪ R′ ∪ {z}) which does not contain the fixed point
α. The other component is called the co-wake and it is denoted by W̌ . Point z is
called the root of W . The angle a(W ) of the wake is just the (normalized) measure
of W ∩ T∞. Clearly a(W ) + a(W̌ ) = 1 (see Fig. 11(a)).

Since distinct external rays are disjoint, it follows that any two wakes with distinct
roots are either disjoint or nested.

In the following lemma we collect basic properties of wakes (compare [G-M] or
[Mi2]):

Lemma 13. Let z ∈ J be a biaccessible point, z ̸= α, and let W be a wake with root
z.

(a) If z ̸= 0, then a(W ) > 1/2 if and only if W contains the critical point 0.
(b) If a(W ) = 1/2, then z must be the critical point 0. Conversely, if there is any

ray R landing at 0, then R′ = τ(R) also lands at 0 and the two rays span a
wake W with a(W ) = 1/2.

(c) Let a(W ) < 1/2 and f(z) ̸= α. Then f(W ) is a wake or a co-wake with root
f(z), depending on whether −α /∈ W or −α ∈ W . In either case, f : W →
f(W ) is a conformal isomorphism and a(f(W )) = 2a(W ).

Proof. Let W be the wake of a ray pair (R,R′).
(a) Let 0 ∈ W and a(W ) < 1/2. Consider the symmetric region τ(W ) whose angle

is equal to a(W ). W and τ(W ) intersect since both contain 0 (see Fig. 11(b)). On the

other hand, W ∩ τ(W ) ∩ T∞ = ∅ because a(W ) < 1/2. Since W and τ(W ) are both
homeomorphic to closed disks, it follows that the ray pairs (R,R′) and (τ(R), τ(R′))
must intersect, which is a contradiction. Therefore a(W ) > 1/2 if 0 ∈ W .

On the other hand, let a(W ) > 1/2. Then the angle of the co-wake W̌ has to be
less than 1/2, so by the above argument 0 /∈ W̌ , or 0 ∈ W . This proves (a).

(b) If a(W ) = 1/2, then R′ = τ(R). Hence z = τ(z) by continuity, which means
z = 0. The converse is trivial.
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(c) If a(W ) < 1/2, then the ray pairs (R,R′) and (τ(R), τ(R′)) cut the plane into
simply connected domains W , τ(W ) and an open set U which is either a simply
connected domain or the disjoint union of two simply connected domains depending
on whether z ̸= 0 or z = 0. By (a), 0 /∈ W∪τ(W ). Consider the ray pair (f(R), f(R′))
landing at f(z), and let W ′ be the corresponding wake. The pull-back of W ′ by f
either consists of the disjoint unionW⊔τ(W ) or the open set U (see Fig. 11(c)). In the
first case, f mapsW toW ′ isomorphically and −α /∈ W . In the second case, however,
we must have −α ∈ W , α ∈ τ(W ), and both W and τ(W ) map isomorphically to the
co-wake W̌ ′. The fact that a(f(W )) = 2a(W ) simply follows from (2.3). �

2.6. The main theorem. Now we are in a position to state and prove the main
theorem of Part II:

Theorem 5. Let f be a quadratic polynomial as in (2.1) which has an irrationally
indifferent fixed point α. Let z be a biaccessible point in the Julia set of f . Then:

• In the Siegel case, the orbit of z must eventually hit the critical point 0.
• In the Cremer case, the orbit of z must eventually hit the fixed point α.

(Compare [S-Z] where this same result for the Cremer case is proved by a somewhat
different argument.)

In the Siegel case, if the critical point 0 is accessible, then exactly two rays land
there (see the proof of Lemma 13(b)). This happens, for example, when θ ∈ CT,
since in this case by Theorem 4(a) the Julia set is locally-connected. On the other
hand, for some rotation numbers θ ∈ B ∩ H′, the critical point is not accessible so
that there are no biaccessible points in the Julia set (see Corollary 6).

In the Cremer case, if the fixed point α is accessible, then infinitely many rays land
there. In fact, if Rt lands at α, then t is irrational and every R2nt lands at α also.
However, there is no known example where one can decide whether α is accessible or
not.

The proof of Theorem 5 is based on the following lemma:
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Lemma 14. Let f be a Siegel or Cremer quadratic polynomial as in (2.1). Assume
that there exists a biaccessible point in J whose orbit never hits the critical point 0 or
the fixed point α. Then there exists a ray pair which separates α from 0.

Proof. Let z ∈ J be such a biaccessible point and (R,R′) be a ray pair which lands at
z. Consider the associated wake W0 with root z. Since z ̸= 0, we have a(W0) ̸= 1/2
by Lemma 13(b). If a(W0) > 1/2, then 0 ∈ W0 by Lemma 13(a) and (R,R′) separates
α from 0. Let us consider the case where a(W0) < 1/2. If −α ∈ W0, then (R,R′)
must separate −α from 0 because by Lemma 13(a), 0 /∈ W0. It follows that the
symmetric ray pair (τ(R), τ(R′)) separates α from 0. If, however, −α /∈ W0, then by
Lemma 13(c),W1 = f(W0) is a wake with root z1 = f(z) with angle a(W1) = 2a(W0).

Now we can replace W0 by W1 in the above argument. If either a(W1) > 1/2 or
a(W1) < 1/2 and −α ∈ W1, we can find a ray pair separating α from 0. Otherwise, we
consider the new wake W2 = f(W1) with angle a(W2) = 22a(W0). Since each passage
Wi 7→ Wi+1 implies doubling the angles, this process must stop at some stage, and
this proves the lemma. �

Proof of Theorem 5. It will be more convenient to consider the Cremer case first.
Suppose that the orbit of z never hits α. Since the critical point is not accessible by
Theorem 3(d), Lemma 14 gives us a ray pair (R,R′) landing at some point p ∈ J
which separates α from 0. LetW be the corresponding wake with root p and consider
the co-wake W̌ . The restriction of f to the closure of W̌ is univalent since otherwise
this closure would intersect the closure of the symmetric domain τ(W̌ ), which is
impossible since a(W̌ ) < 1/2. To work with a Jordan domain in the plane we cut off
W̌ along an equipotential curve and call the resulting domain U (see Fig. 12(a)).
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Let us consider a slightly larger Jordan domain V ⊃ U with compact closure such
that f |V is still univalent. The hedgehog HV for the restriction f |V : V → C has to
reach the boundary of V . Since HV is connected and intersects U , it has to intersect
the boundary of U as well. But HV ⊂ J and ∂U ∩ J = {p}. Hence p ∈ HV . Since p
is biaccessible from outside of the Julia set, it follows that HV r {p} is disconnected.
Therefore, p is biaccessible from outside of HV . This contradicts Proposition 1, and
finishes the proof of the theorem in the Cremer case.

Let us now assume that we are in the Siegel case. If the orbit of z eventually hits the
critical point 0, there is nothing to prove. Otherwise, since this orbit trivially cannot
hit the fixed point α ∈ S, we are again in the situation of Lemma 14. Therefore,
there exists a ray pair (R,R′) landing at a point p ∈ J which separates α from 0.
In particular the critical point 0 is off the boundary ∂S of the Siegel disk. Then the
same argument as in the Cremer case with an application of Proposition 1 shows that
p must belong to ∂S.

As before, let W be the wake of the ray pair (R,R′), with root p. Then by con-
struction W contains the critical point 0 while the co-wake W̌ contains the Siegel
disk S and has its boundary touching S only at p. The point p is not periodic by
Proposition 2. Hence the successive images pn = f ◦n(p) ∈ ∂S are all contained in W̌
for n ≥ 1. Therefore each wake Wn corresponding to the ray pair (f ◦n(R), f ◦n(R′)),
with root point pn, is also contained in W̌ (see Fig. 12(b)). In particular, none of
these wakes contains the critical point. Hence a(Wn+1) = 2a(Wn) < 1/2 for all n by
Lemma 13(c), which is clearly impossible. The contradiction shows that the orbit of
z must eventually hit the critical point. 2

By Proposition 3, we have the following corollary:

Corollary 6. Let f be a Siegel quadratic polynomial with 0 /∈ ∂S and θ ∈ H′. Then
there are no biaccessible points in J at all.

By Lemma 13(b), every wake with angle 1/2 must have its root at the critical point
0. The converse is not true for arbitrary quadratic polynomials. For example, the
real Feigenbaum map z 7→ z2 − 1.401155 · · · has four distinct external rays landing
on its critical point (compare with [J-H]). However, in the case of a Siegel quadratic
polynomial, the critical point 0 is the landing point of at most one ray pair (Rs, τ(Rs))
(In the Cremer case, there are no such ray pairs by Theorem 3(d)). This is nontrivial
and follows from the statement that every Siegel or Cremer quadratic on the boundary
of the main cardioid of the Mandelbrot set is the landing point of a unique parameter
ray [G-M]. In fact, one can explicitly compute the angle s of the candidate ray pair
(Rs, τ(Rs)) which may land at 0 from the equation (1.8) in Part I. It is interesting
that the uniqueness of such s also follows from Theorem 5:
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Corollary 7. Let f be a Siegel quadratic polynomial as in (2.1). Then, no point in
the Julia set J is the landing point of more than two rays. In particular, at most one
ray pair lands at the critical point 0.

Proof. By Theorem 5 it suffices to prove the corollary for the critical point. Suppose
that there is a ray pair (R,R′) which lands at 0 such that R′ ̸= τ(R). It follows that
(f(R), f(R′)) is a ray pair which lands at the critical value c. By Theorem 5, the
orbit of c must eventually hit the critical point 0. But this means that 0 is periodic,
which is impossible. �
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