SULLIVAN’S PROOF OF FATOU’S NO WANDERING DOMAIN
CONJECTURE

S. ZAKERI

ABSTRACT. A self-contained and simplified version of Sullivan’s proof, following N.
Baker and C. McMullen.

§1. Set up. Let f : C — C be a rational map of degree d > 2. Let J(f) and
F(f) denote the Julia set and the Fatou set of f, respectively. Recall that the open
set F'(f) consists of all points near which the family of iterates { "} is normal, and
J(f) = C\F (f). The Julia set also coincides with the closure of the set of repelling
periodic points of f. Every connected component of F(f) is called a Fatou compo-
nent. The image f(U) of a Fatou component U is itself a Fatou component and the
mapping f : U — f(U) is proper of some degree < d.

Theorem (Sullivan). Every Fatou component U of f is eventually periodic, that is,
there exist n > m > 0 such that f*(U) = fo™(U).

The idea of the proof is as follows: Assuming there exists a wandering Fatou com-
ponent U (or simply a wandering domain), we change the conformal structure of the
sphere along the grand orbit of U to find an infinite-dimensional family of rational
maps of degree d, all quasiconformally conjugate to f. This is a contradiction since
the space Rat, of rational maps of degree d, as a Zariski open subset of CP?¥*! ig
finite-dimensional.

Remark. The corresponding statement for entire maps is false. For example, the
map z — z + sin(27z) has wandering domains.

82. A reduction. The following observation drastically simplifies part of Sullivan’s
original argument.

Lemma (Baker). If U is a wandering domain, then f°"(U) is simply-connected for
all large n.

Proof. Let U, = f°"(U). Replacing U by Uy for some large k if necessary, we may
assume that no U, contains a critical point of f, so that f" : U — U, is a covering
map for all n. We can also arrange that oo € U. Since the U,, are disjoint subsets of
C \ U for n > 1, we have area(U,) — 0. But {f°"|y} is a normal family, so every
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convergent subsequence of this sequence must be a constant function. In particular,
diam(f°"(K)) — 0 for every compact set K C U.

Now take any loop v C U and set v, = f°"(y) C U,. By the above argument
diam(y,) — 0. If B, is the union of the bounded components of C \ ~,, it follows
that diam(B,,) — 0 also. Since f(B,) is open, df(B,) C Yn+1, and diam f(B,) — 0,
we must have f(B,) C B,. for large n. In particular, the iterated images of B,
are subsets of C \ U for large n. Montel’s theorem then implies B,, C F(f), which
gives B, C U,. Thus =, is null-homotopic in U, for large n. Since f°"* : U — U,
is a covering map, we can lift this homotopy to U. This proves that U is simply
connected. a

83. Constructing deformations. Let f have a wandering domain U. In view of
the above lemma, we can assume that U,, = f°"(U) is simply-connected and f : U, —
U, 11 is a conformal isomorphism for all n > 0. Given an L*° Beltrami differential
i defined on U, we can construct an f-invariant L*° Beltrami differential on C as
follows. Use the forward and backward iterates of f to spread p along the grand orbit

GOU) ={z € C: f*(z) € Uy, for some n,m > 0}.

On the complement C GO(U), set u = 0. The resulting Beltrami differential is

~

defined almost everywhere on C, it satisfies f*u = p by the way it is defined, and
l14]|co < 00 since spreading u|y along GO(U) by the iterates of the holomorphic map
f does not change the dilatation. Now consider the deformation p; = tu for |t| < e,
where € > 0 is small enough to guarantee ||1]|o < 1 if || < e. Note that since f is
holomorphic, f* acts as a linear rotation, so f*u; = ;. Let o = @t : C — C be
the normalized solution of the Beltrami equation d¢; = p; Oy, which fixes 0,1, co.
It is easy to see that f, = ¢, o f o ¢; ' is a rational map of degree d, and t — f; is
holomorphic, with fo = f. The infinitesimal variation

d
wz) = 2| i)

defines a holomorphic vector field whose value at z lies in the tangent space TY.)C.
In otl/l\er words, w can be thought of as a holomorphic section of the pull-back bundle
f*(T'C) which in turn can be identified with a tangent vector in TyRaty. This is the
so-called infinitesimal deformation of f induced by pu. We say that p induces a trivial
deformation if w = 0.

Another way of describing w is as follows: First consider the unique quasiconfor-
mal vector field solution to the d-equation dv = p which vanishes at 0,1, c0. This
is precisely the infinitesimal variation £|,_o¢;(2) of the normalized solution of the
Beltrami equation. It is not hard to check that w = v, where

dv(z) = v(f(2)) = f'(2)v(2)
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measures the deviation of v from being f-invariant. Note in particular that dsv is
holomorphic even though v is only quasiconformal, and that w = d ;v depends linearly
on u, a fact that is not immediately clear from the first description of w. It follows
that p induces a trivial deformation if and only if v is f-invariant.

It is easy to see that the triviality condition 6;v = 0 forces v to vanish on the Julia
set J(f). In fact, let zg — 21 — -+ — 2, = 2o be a repelling cycle of f with multiplier
A. Then the condition éfv = 0 implies v(2;+1) = f'(2;)v(z;) for all j =0,...,n — 1,

so that
n—1 n—1
H v(z) =X~ Hv(zj).
§=0 3=0

Since |A| > 1, it follows that v(z;) = 0 for some, hence for all j. Now J(f) is the
closure of such cycles and v is continuous, so v(z) = 0 for all z € J(f).

84. The proof. The above construction gives well-defined linear maps
(1) B(U) <& B(C, f) -2 T;Ratq

Here B(U) is the space of L™ Beltrami differentials in U, B (@, f) is the space of f-

invariant L>° Beltrami differentials on @, and D is the linear operator Dy = w = dv
constructed above.

Lemma. B(U) contains an infinite-dimensional subspace N(U) of compactly sup-
ported Beltrami differentials with the following property: If u € N(U) satisfies p = Ov
for some quasiconformal vector field v with v|sy = 0, then u = 0.

Assuming this for a moment, let us see how this implies the theorem. Consider the
above subspace N(U) for a simply-connected wandering domain U and restrict the
diagram (1) to this subspace. If D(u) = 0 for some u € N(U), or in other words
if 11 induces a trivial deformation, that means the normalized solution v to dv = p
is f-invariant. Hence v = 0 on J(f) and in particular on the boundary of U. By
the property of N(U), p = 0. This means that the infinite-dimensional subspace
N(U) injects into TyRat,; whose dimension is 2d 4+ 1. The contradiction shows that
no wandering domain can exist.

It remains to prove thAe Lemma. Let us first consider the corresponding problem
for the unit disk D. Let N(DD) C B(ID) be the linear span of the Beltrami differentials
up(z) = Ekj—j for £ > 0. The vector field

1
—Ekﬂg lz| <1
Vi(z) = kE+1 0z
k Lz_(k“)2 |z| > 1
k+1 0z -

solves the equation dVj, = p, on D. Let u = ov € N(D) and v|gp = 0, and take
the appropriate linear combination V' of the V) which solves OV = u. Then V — v is



4 S. ZAKERI

holomorphic in D and coincides with V" on the boundary dD. This is impossible if V'|gp
has any negative power of z in it. Hence u = 0. To get the compact support condition,
let N(D) C B(U) consist of all Beltrami differentials which coincide with an element
of N(DD) on the disk |z| < 1/2 and are zero on 1/2 < |z| < 1. If = dv € N(D) and
v|ap = 0, then v has to be zero on the annulus 1/2 < |z| < 1 since it is holomorphic
there. In particular, it is zero on |z| = 1/2. Now the same argument applied to the
disk |z| < 1/2 shows u = 0.

For the general case, consider a conformal isomorphism v : D =, U with the
inverse ¢ = ¢~! and define N(U) = ¢*(N(D)). Let v = v(z)£ be a quasiconformal
vector field such that p = dv € N(U) and v|py = 0. Then ¢.(v) = v(¢(2))/¢'(z) &
is a vector field on D which is holomorphic near the boundary 9D and v(¢(z)) — 0
as |z| — 1. By the reflection principle, v(1(z)) is identically zero near the boundary
of D. Since ¥*u = 0¢,(v) € N(D), we must have ¢*i = 0, which implies y = 0. O

Remark. Sullivan’s original argument [Ann. of Math. 122 (1985) 401-418| had to
deal with two essential difficulties: (i) the possibility of U being non simply-connected,
perhaps of infinite topological type; (ii) the possible complications near the boundary
of U, for example when OU is not locally-connected. He addressed the former by using
a direct limit argument, and the latter by using Carathéodory’s theory of “prime
ends.” Both of these difficulties are surprisingly bypassed in the present proof.



