
SULLIVAN’S PROOF OF FATOU’S NO WANDERING DOMAIN
CONJECTURE

S. ZAKERI

Abstract. A self-contained and simplified version of Sullivan’s proof, following N.
Baker and C. McMullen.

§1. Set up. Let f : Ĉ → Ĉ be a rational map of degree d ≥ 2. Let J(f) and
F (f) denote the Julia set and the Fatou set of f , respectively. Recall that the open
set F (f) consists of all points near which the family of iterates {f ◦n} is normal, and

J(f) = Ĉ rF (f). The Julia set also coincides with the closure of the set of repelling
periodic points of f . Every connected component of F (f) is called a Fatou compo-
nent. The image f(U) of a Fatou component U is itself a Fatou component and the
mapping f : U → f(U) is proper of some degree ≤ d.

Theorem (Sullivan). Every Fatou component U of f is eventually periodic, that is,
there exist n > m > 0 such that f ◦n(U) = f ◦m(U).

The idea of the proof is as follows: Assuming there exists a wandering Fatou com-
ponent U (or simply a wandering domain), we change the conformal structure of the
sphere along the grand orbit of U to find an infinite-dimensional family of rational
maps of degree d, all quasiconformally conjugate to f . This is a contradiction since
the space Ratd of rational maps of degree d, as a Zariski open subset of CP2d+1, is
finite-dimensional.

Remark. The corresponding statement for entire maps is false. For example, the
map z 7→ z + sin(2πz) has wandering domains.

§2. A reduction. The following observation drastically simplifies part of Sullivan’s
original argument.

Lemma (Baker). If U is a wandering domain, then f ◦n(U) is simply-connected for
all large n.

Proof. Let Un = f ◦n(U). Replacing U by Uk for some large k if necessary, we may
assume that no Un contains a critical point of f , so that f ◦n : U → Un is a covering
map for all n. We can also arrange that ∞ ∈ U . Since the Un are disjoint subsets of
C r U for n ≥ 1, we have area(Un) → 0. But {f ◦n|U} is a normal family, so every
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convergent subsequence of this sequence must be a constant function. In particular,
diam(f ◦n(K)) → 0 for every compact set K ⊂ U .

Now take any loop γ ⊂ U and set γn = f ◦n(γ) ⊂ Un. By the above argument
diam(γn) → 0. If Bn is the union of the bounded components of C r γn, it follows
that diam(Bn) → 0 also. Since f(Bn) is open, ∂f(Bn) ⊂ γn+1, and diam f(Bn) → 0,
we must have f(Bn) ⊂ Bn+1 for large n. In particular, the iterated images of Bn

are subsets of C r U for large n. Montel’s theorem then implies Bn ⊂ F (f), which
gives Bn ⊂ Un. Thus γn is null-homotopic in Un for large n. Since f ◦n : U → Un

is a covering map, we can lift this homotopy to U . This proves that U is simply
connected. 2

§3. Constructing deformations. Let f have a wandering domain U . In view of
the above lemma, we can assume that Un = f ◦n(U) is simply-connected and f : Un →
Un+1 is a conformal isomorphism for all n ≥ 0. Given an L∞ Beltrami differential

µ defined on U , we can construct an f -invariant L∞ Beltrami differential on Ĉ as
follows. Use the forward and backward iterates of f to spread µ along the grand orbit

GO(U) = {z ∈ Ĉ : f ◦n(z) ∈ Um for some n,m ≥ 0}.

On the complement Ĉ r GO(U), set µ = 0. The resulting Beltrami differential is

defined almost everywhere on Ĉ, it satisfies f ∗µ = µ by the way it is defined, and
‖µ‖∞ < ∞ since spreading µ|U along GO(U) by the iterates of the holomorphic map
f does not change the dilatation. Now consider the deformation µt = tµ for |t| < ε,
where ε > 0 is small enough to guarantee ‖µt‖∞ < 1 if |t| < ε. Note that since f is

holomorphic, f ∗ acts as a linear rotation, so f ∗µt = µt. Let ϕt = ϕµt : Ĉ → Ĉ be
the normalized solution of the Beltrami equation ∂ϕt = µt ∂ϕt which fixes 0, 1,∞.
It is easy to see that ft = ϕt ◦ f ◦ ϕ−1

t is a rational map of degree d, and t 7→ ft is
holomorphic, with f0 = f . The infinitesimal variation

w(z) =
d

dt

∣∣∣
t=0

ft(z)

defines a holomorphic vector field whose value at z lies in the tangent space Tf(z)Ĉ.
In other words, w can be thought of as a holomorphic section of the pull-back bundle

f ∗(T Ĉ) which in turn can be identified with a tangent vector in TfRatd. This is the
so-called infinitesimal deformation of f induced by µ. We say that µ induces a trivial
deformation if w = 0.

Another way of describing w is as follows: First consider the unique quasiconfor-
mal vector field solution to the ∂-equation ∂v = µ which vanishes at 0, 1,∞. This
is precisely the infinitesimal variation d

dt
|t=0 ϕt(z) of the normalized solution of the

Beltrami equation. It is not hard to check that w = δfv, where

δfv(z) = v(f(z))− f ′(z)v(z)
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measures the deviation of v from being f -invariant. Note in particular that δfv is
holomorphic even though v is only quasiconformal, and that w = δfv depends linearly
on µ, a fact that is not immediately clear from the first description of w. It follows
that µ induces a trivial deformation if and only if v is f -invariant.

It is easy to see that the triviality condition δfv = 0 forces v to vanish on the Julia
set J(f). In fact, let z0 7→ z1 7→ · · · 7→ zn = z0 be a repelling cycle of f with multiplier
λ. Then the condition δfv = 0 implies v(zj+1) = f ′(zj)v(zj) for all j = 0, . . . , n − 1,
so that

n−1∏
j=0

v(zj) = λ ·
n−1∏
j=0

v(zj).

Since |λ| > 1, it follows that v(zj) = 0 for some, hence for all j. Now J(f) is the
closure of such cycles and v is continuous, so v(z) = 0 for all z ∈ J(f).

§4. The proof. The above construction gives well-defined linear maps

(1) B(U)
i

↪→ B(Ĉ, f)
D−→ TfRatd

Here B(U) is the space of L∞ Beltrami differentials in U , B(Ĉ, f) is the space of f -

invariant L∞ Beltrami differentials on Ĉ, and D is the linear operator Dµ = w = δfv
constructed above.

Lemma. B(U) contains an infinite-dimensional subspace N(U) of compactly sup-
ported Beltrami differentials with the following property: If µ ∈ N(U) satisfies µ = ∂v
for some quasiconformal vector field v with v|∂U = 0, then µ = 0.

Assuming this for a moment, let us see how this implies the theorem. Consider the
above subspace N(U) for a simply-connected wandering domain U and restrict the
diagram (1) to this subspace. If D(µ) = 0 for some µ ∈ N(U), or in other words
if µ induces a trivial deformation, that means the normalized solution v to ∂v = µ
is f -invariant. Hence v = 0 on J(f) and in particular on the boundary of U . By
the property of N(U), µ = 0. This means that the infinite-dimensional subspace
N(U) injects into TfRatd whose dimension is 2d + 1. The contradiction shows that
no wandering domain can exist.

It remains to prove the Lemma. Let us first consider the corresponding problem

for the unit disk D. Let N̂(D) ⊂ B(D) be the linear span of the Beltrami differentials
µk(z) = zk dz

dz
for k ≥ 0. The vector field

Vk(z) =





1

k + 1
zk+1 ∂

∂z
|z| < 1

1

k + 1
z−(k+1) ∂

∂z
|z| ≥ 1

solves the equation ∂Vk = µk on D. Let µ = ∂v ∈ N̂(D) and v|∂D = 0, and take
the appropriate linear combination V of the Vk which solves ∂V = µ. Then V − v is
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holomorphic in D and coincides with V on the boundary ∂D. This is impossible if V |∂D
has any negative power of z in it. Hence µ = 0. To get the compact support condition,
let N(D) ⊂ B(U) consist of all Beltrami differentials which coincide with an element

of N̂(D) on the disk |z| < 1/2 and are zero on 1/2 ≤ |z| < 1. If µ = ∂v ∈ N(D) and
v|∂D = 0, then v has to be zero on the annulus 1/2 < |z| < 1 since it is holomorphic
there. In particular, it is zero on |z| = 1/2. Now the same argument applied to the
disk |z| < 1/2 shows µ = 0.

For the general case, consider a conformal isomorphism ψ : D
∼=−→ U with the

inverse φ = ψ−1 and define N(U) = φ∗(N(D)). Let v = v(z) ∂
∂z

be a quasiconformal

vector field such that µ = ∂v ∈ N(U) and v|∂U = 0. Then φ∗(v) = v(ψ(z))/ψ′(z) ∂
∂z

is a vector field on D which is holomorphic near the boundary ∂D and v(ψ(z)) → 0
as |z| → 1. By the reflection principle, v(ψ(z)) is identically zero near the boundary
of D. Since ψ∗µ = ∂φ∗(v) ∈ N(D), we must have ψ∗µ = 0, which implies µ = 0. 2

Remark. Sullivan’s original argument [Ann. of Math. 122 (1985) 401-418] had to
deal with two essential difficulties: (i) the possibility of U being non simply-connected,
perhaps of infinite topological type; (ii) the possible complications near the boundary
of U , for example when ∂U is not locally-connected. He addressed the former by using
a direct limit argument, and the latter by using Carathéodory’s theory of “prime
ends.” Both of these difficulties are surprisingly bypassed in the present proof.


