Math 704 Problem Set 7 Solutions

Problem 1. Suppose f € O(C) maps real numbers to real numbers and imaginary numbers
to imaginary numbers. Prove that f(—z) = — f(z) forall z € C.

Since f maps real numbers to real numbers, the entire function z — f(Z) agrees with f on
the real axis, hence everywhere by the identity theorem. Similarly, since f maps imaginary
numbers to imaginary numbers, the entire function z — — f(—2) agrees with f on the
imaginary axis, hence everywhere. Thus,

f(z2)= f(z) =—-f(-2) forall z € C.

It follows that f is an odd function:

f(=z)= f(-2) = —f(2) forall z € C.

Problem 2. Suppose f € O(C) takes real values on both the real and imaginary axes. Show
that f(z) = g(z?) for some g € O(C).

Since f takes real values on the real axis, the argument of the previous problem shows that
f(z) = f(z) forall z € C. Since f takes real values on the imaginary axis, the entire

function z +— f(—Zz) agrees with f on the imaginary axis, hence everywhere, showing that
f(z) = f(=z) forall z € C. Thus,

f(=2) = f(=2) = f(2) forall z € C,

that is, f is an even function. If f(z) = Y -, an z", it follows that a, = 0 for all odd n.

Now the entire function g represented by the power series Y oo a2, z" satisfies the relation
g(z?) = f(z)forall z € C.

Problem 3. Suppose f € O(C) and | f(z)| = 1 whenever |z| = 1. Show that f is of the
form f(z) = Az", where |A| = 1 and n is an integer > 0.

Since f is not identically zero, the set E of zeros of f in the unit disk is finite (possibly
empty). Let E* be the image of E under the reflection z + 1/Z across the unit circle. Since
| f(z)] = 1 whenever |z| = 1, the Schwarz reflection principle shows that the function
F :C~ (E U E*)— C defined by

f(2) zeD\NE
= 1
f/z)
is holomorphic. We have F = f inID \ E, hence in C \ (E U E*) by the identity theorem.
Because f is entire, it follows that every point of £ U E™* is removable for F'. Thus,

f(z) =1/f(1/z)in C\ D, hence in C. In particular, either £ = @ or E = {0} (a non-zero
p € E would force 1/p € E* to be a pole of f).




Now let n = ord(f,0) > 0. Then g(z) = f(z)/z" has a removable singularity at z = 0,
so it extends to a non-vanishing holomorphic function in D. Since |g(z)| = 1 for |z]| = 1,
the maximum principle applied to g and 1/g gives |g| < 1 and 1/|g| < 1 in D. Hence
|g| = 1 in D. By the open mapping theorem g must take a constant value A with |A| = 1.
This proves f(z) = Az", as required.

Problem 4. Suppose f : D — D is holomorphic and | f(z)| — 1 as |z| — 1. Show that f
is a finite Blaschke product of the form

fe) =2 H (T=2):
ji=1

where [A| = l and |a;| < 1 forall 1 < j <n.

The argument is similar to problem 3 except that now poles are allowed. To show a slightly
different viewpoint, instead of taking care to remove zeros and poles E and E* as we did
in problem 3, we stop worrying about them by working with holomorphic maps on the
Riemann sphere. This makes the argument simpler and shorter.

We may assume f is not constant (otherwise f = A and the product over the empty set
of zeros is 1). Since | f(z)| — 1 as |z| — 1 we can use the Schwarz reflection principle
to extend f to a holomorphic map F : C — C which commutes with the reflection
z > 1/z,s0 F(1/2) = l/F(z) By Theorem 3.20, F is a rational function with the
property F(D) = D and F (C D) = C~D.In particular, all zeros of F are in D and all
poles of F are in C~D.If ai,...,ay are the zeros of F listed according to their orders, then
l/ay, ..., 1/a, are the poles of F listed according to their orders. The Blaschke product
B(z) = ]_[;;1(2 —a;)/(1 —aj z) has the same zeros and poles of the same orders as F.
Hence F/ B is a rational function without zeros or poles, and therefore is a constant A. Since
| F| = |B| = 1 on the unit circle, we must have |A| = 1, as required.

Comment. For another argument avoiding Schwarz reflection, see Theorem 7.51. Also,
problem 3 follows easily from problem 4. Make sure you convince yourself why.

Problem 5. Suppose f € O(C*) has a simple pole at 0 and f(T) C R. Show that
a
f(z) = 2 +b+az

for some constants a € C* and b € R.

Since f maps the unit circle to the real line, it makes sense to consider Schwarz reflection
using z + 1/Z in the domain and z + Z in the target. So, consider g € O(C*) defined
by g(z) = f(1/Z). Then g = f on T, hence everywhere in C*. In other words, f has
the symmetry f(z) = f(1/z) for all z # 0. Imposing this condition on the Laurent series




f(z) =72 a,z"in C* gives

n=-—1 n=-—1 n=—00

Uniqueness of Laurent series coefficients then implies
ap = ag, a; = a—, anda, = 0if |n| > 2,

which is equivalent to the claim.

Problem 6. What can you say about a bounded holomorphic function defined in the domain
{z € C:|z —i| > 1/2} which takes real values on the segment [—1, 1]?

We claim that any such function f must be constant. Consider the function g(z) = f(2)
which is bounded and holomorphic in the reflected domain {z € C : |z 4+ i| > 1/2}. Since
[ takes real values on the interval [—1, 1], we see that g = f on [—1, 1]. By the identity
theorem, g = f in their common domain {z € C : |z £ i| > 1/2}. This shows that the

function F : C — C given by
Fz) = f(2) %f|Z—l‘|>1/2
g(2) if|lz—i] <1/2

is well defined and holomorphic. Since f and g are bounded, so is F. By Liouville’s
theorem, F is constant. It follows that f must be constant.



