
Math 704 Problem Set 7 Solutions
Problem 1. Suppose f 2 O.C/ maps real numbers to real numbers and imaginary numbers
to imaginary numbers. Prove that f .�z/ D �f .z/ for all z 2 C.

Since f maps real numbers to real numbers, the entire function z 7! f .z/ agrees with f on
the real axis, hence everywhere by the identity theorem. Similarly, since f maps imaginary
numbers to imaginary numbers, the entire function z 7! �f .�z/ agrees with f on the
imaginary axis, hence everywhere. Thus,

f .z/ D f .z/ D �f .�z/ for all z 2 C:

It follows that f is an odd function:

f .�z/ D f .�z/ D �f .z/ for all z 2 C:

Problem 2. Suppose f 2 O.C/ takes real values on both the real and imaginary axes. Show
that f .z/ D g.z2/ for some g 2 O.C/.
Since f takes real values on the real axis, the argument of the previous problem shows that
f .z/ D f .z/ for all z 2 C. Since f takes real values on the imaginary axis, the entire
function z 7! f .�z/ agrees with f on the imaginary axis, hence everywhere, showing that
f .z/ D f .�z/ for all z 2 C. Thus,

f .�z/ D f .�z/ D f .z/ for all z 2 C;

that is, f is an even function. If f .z/ D
P1

nD0 an z
n, it follows that an D 0 for all odd n.

Now the entire function g represented by the power series
P1

nD0 a2n z
n satisfies the relation

g.z2/ D f .z/ for all z 2 C.

Problem 3. Suppose f 2 O.C/ and jf .z/j D 1 whenever jzj D 1. Show that f is of the
form f .z/ D �zn, where j�j D 1 and n is an integer � 0.

Since f is not identically zero, the set E of zeros of f in the unit disk is finite (possibly
empty). Let E� be the image of E under the reflection z 7! 1=z across the unit circle. Since
jf .z/j D 1 whenever jzj D 1, the Schwarz reflection principle shows that the function
F W C∖ .E [E�/! C defined by

F.z/ D

8<:f .z/ z 2 D∖E
1

f .1=z/
C∖ .D [E�/

is holomorphic. We have F D f in D∖E, hence in C∖ .E [E�/ by the identity theorem.
Because f is entire, it follows that every point of E [ E� is removable for F . Thus,
f .z/ D 1=f .1=z/ in C∖D, hence in C. In particular, eitherE D ; orE D f0g (a non-zero
p 2 E would force 1=p 2 E� to be a pole of f ).
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Now let n D ord.f; 0/ � 0. Then g.z/ D f .z/=zn has a removable singularity at z D 0,
so it extends to a non-vanishing holomorphic function in D. Since jg.z/j D 1 for jzj D 1,
the maximum principle applied to g and 1=g gives jgj � 1 and 1=jgj � 1 in D. Hence
jgj D 1 in D. By the open mapping theorem g must take a constant value � with j�j D 1.
This proves f .z/ D �zn, as required.

Problem 4. Suppose f W D! D is holomorphic and jf .z/j ! 1 as jzj ! 1. Show that f
is a finite Blaschke product of the form

f .z/ D �

nY
jD1

� z � aj

1 � aj z

�
;

where j�j D 1 and jaj j < 1 for all 1 � j � n.

The argument is similar to problem 3 except that now poles are allowed. To show a slightly
different viewpoint, instead of taking care to remove zeros and poles E and E� as we did
in problem 3, we stop worrying about them by working with holomorphic maps on the
Riemann sphere. This makes the argument simpler and shorter.

We may assume f is not constant (otherwise f D � and the product over the empty set
of zeros is 1). Since jf .z/j ! 1 as jzj ! 1, we can use the Schwarz reflection principle
to extend f to a holomorphic map F W bC ! bC which commutes with the reflection
z 7! 1=z, so F.1=z/ D 1=F.z/. By Theorem 3.20, F is a rational function with the
property F.D/ D D and F.bC∖ D/ D bC∖ D. In particular, all zeros of F are in D and all
poles of F are inbC∖D. If a1; : : : ; an are the zeros of F listed according to their orders, then
1=a1; : : : ; 1=an are the poles of F listed according to their orders. The Blaschke product
B.z/ D

Qn
jD1.z � aj /=.1 � aj z/ has the same zeros and poles of the same orders as F .

Hence F=B is a rational function without zeros or poles, and therefore is a constant �. Since
jF j D jBj D 1 on the unit circle, we must have j�j D 1, as required.

Comment. For another argument avoiding Schwarz reflection, see Theorem 7.51. Also,
problem 3 follows easily from problem 4. Make sure you convince yourself why.

Problem 5. Suppose f 2 O.C�/ has a simple pole at 0 and f .T/ � R. Show that

f .z/ D
a

z
C b C a z

for some constants a 2 C� and b 2 R.

Since f maps the unit circle to the real line, it makes sense to consider Schwarz reflection
using z 7! 1=z in the domain and z 7! z in the target. So, consider g 2 O.C�/ defined
by g.z/ D f .1=z/. Then g D f on T, hence everywhere in C�. In other words, f has
the symmetry f .z/ D f .1=z/ for all z ¤ 0. Imposing this condition on the Laurent series
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f .z/ D
P1

nD�1 an z
n in C� gives

1X
nD�1

an z
n
D

1X
nD�1

an z
�n
D

1X
nD�1

a�n z
n:

Uniqueness of Laurent series coefficients then implies

a0 D a0; a1 D a�1; and an D 0 if jnj � 2;

which is equivalent to the claim.

Problem 6. What can you say about a bounded holomorphic function defined in the domain
fz 2 C W jz � i j > 1=2g which takes real values on the segment Œ�1; 1�?

We claim that any such function f must be constant. Consider the function g.z/ D f .z/
which is bounded and holomorphic in the reflected domain fz 2 C W jz C i j > 1=2g. Since
f takes real values on the interval Œ�1; 1�, we see that g D f on Œ�1; 1�. By the identity
theorem, g D f in their common domain fz 2 C W jz ˙ i j > 1=2g. This shows that the
function F W C! C given by

F.z/ D

(
f .z/ if jz � i j > 1=2
g.z/ if jz � i j � 1=2

is well defined and holomorphic. Since f and g are bounded, so is F . By Liouville’s
theorem, F is constant. It follows that f must be constant.


