
Math 704 Problem Set 6 Solutions
Problem 1. Suppose f 2 O.D/ and the sequence ff .n/.0/gn�1 grows at most exponentially
fast, i.e., there is a constant � > 1 such that jf .n/.0/j < �n for all n � 1. Show that f
extends to an entire function.

Let f .z/ D
P1
nD0 an z

n for jzj < 1. By the assumption,
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for all n. Since .nŠ/1=n is easily seen to tend to infinity as n ! 1, it follows that
limn!1 janj

1=n D 0. Thus, the radius of convergence R D 1= limn!1 janj
1=n of the

power series of f isC1. As such, this power series provides an extension of f to an entire
function.

Problem 2. Let f be a holomorphic function defined in a neighborhood of the origin, say
D.0; r/, which satisfies

f .2z/ D .f .z//2 whenever jzj < r:

Use this functional equation to show that f can be extended to an entire function. Can you
determine all such entire functions explicitly?

Take z 2 C and find the smallest integer n � 0 such that jzj=2n < r . Set

(1) F.z/ D
�
f
� z
2n

��2n

:

Observe that the right side of (1) remains unchanged if you replace n by any integer
greater than n. In fact, if jzj=2k < r , then f .z=2k/ D f .2z=2kC1/ D .f .z=2kC1//2 so
.f .z=2k//2

k

D .f .z=2kC1//2
kC1

.

Thus, we have a well-defined function F W C ! C which is holomorphic by (1) (if
n works for some z, the same n works for all points sufficiently close to z). Moreover,
F.z/ D f .z/ for jzj < r since we can take n D 0 in this case. Note that by (1) the functional
equation F.2z/ D .F.z//2 still holds for all z 2 C. In particular, F.0/ D .F.0//2, so F.0/
is either 0 or 1.

To find all such F , we consider two cases:

Case 1. F.0/ D 0. In this case F must be identically zero. Otherwise, let m D
ord.F; 0/ D ord.f; 0/ � 1 and observe that in the equation F.2z/ D .F.z//2 the left side
has a zero of order m at the origin while the right side has a zero of order 2m at the origin.
Contradiction!

Case 2. F.0/ D 1. In this case F has no zeros in C. In fact, if F.p/ D 0 for some p
(necessarily p ¤ 0), then .F.p=2n//2

n

D F.p/ D 0 so F.p=2n/ D 0 for all n � 0. By
continuity, this implies F.0/ D 0, which is a contradiction. Now F , being a non-vanishing
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entire function, must be of the form F D exp.G/ for some G 2 O.C/ with G.0/ D 0.
Since

exp.G.2z// D F.2z/ D .F.z//2 D exp.2G.z// for all z 2 C;
we have G.2z/ � 2G.z/ D 2�in for an integer n (independent of z). In view of G.0/ D 0,
we must have n D 0. Writing G.z/ D

P
ak z

k and imposing the equation G.2z/ D 2G.z/
then shows that

P
ak 2

kzk D 2
P
ak z

k for all z, so 2kak D 2ak for all k � 0. This gives
ak D 0 for all k � 0 other than k D 1. Thus, G is linear of the form G.z/ D a1z and
F.z/ D exp.a1z/ for an arbitrary a1 2 C.

Problem 3. The power series f .z/ D
P1
nD0 z

2n

D z C z2 C z4 C z8 C � � � has radius of
convergence 1, so f 2 O.D/. By Hadamard’s gap theorem, T is the natural boundary of f .
Verify this directly by showing that limr!1 f .re

2�it/ D1 for every dyadic rational t , i.e.,
those of the form t D a=2b for integers a; b.

First observe that limr!1 f .r/ D C1. In fact, given any integer N > 0, since
limr!1

PN
nD0 r

2n

D N C 1, we can find a sufficiently small ı > 0 such that 1� ı < r < 1
implies f .r/ >

PN
nD0 r

2n

> N . This can be interpreted as saying that the radial limit of f
at 1 (the 20-th root of unity) is infinite.

Now the definition of f shows that f .z2/ D z2 C z4 C z8 C � � � D f .z/ � z, or
f .z/ D z C f .z2/. Using this relation, we see that if the radial limit of f at the 2n-th roots
of unity is infinite, then the radial limit of f at the 2nC1-st roots of unity is also infinite. It
follows inductively that the radial limit of f at every z 2 T for which z2

n

D 1 for some
n � 0 must be infinite. All such points are singular points of f and they form a dense subset
of T. Since the singular set is closed, it follows that every point of T is singular, i.e., T is
the natural boundary of f .

Problem 4. Fix ˛ > 0 and let f .z/ D
P1
nD0 2

�n˛z2
n

. Show that

(i) The power series has radius of convergence 1, so by Hadamard’s gap theorem, T is the
natural boundary of f 2 O.D/.
We have f .z/ D

P1
kD0 ak z

k , where ak D 2�n˛ if k D 2n for some n � 0 and ak D 0
otherwise. Hence,

lim sup
k!1

jakj
1=k
D lim sup

n!1

.2�n˛/2
�n

D lim sup
n!1

2�n2
�n˛
D 20 D 1;

where we have used the fact that limn!1 n2
�n D 0. It follows that the radius of

convergence of the power series is 1. By Hadamard’s gap theorem (Theorem 10.9 with
mn D 2

n), T is the natural boundary of f .

(ii) f has a continuous extension to the closed unit disk D. Moreover, if ˛ > 1 then f jT is
differentiable.

Since j2�n˛z2
n

j � 2�n˛ for jzj � 1 and
P
2�n˛ converges, the Weierstrass M -test
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shows that the power series converges uniformly on D. In particular, it defines a
continuous function on D.

The power series representation f 0.z/ D
P1
nD0 2

n.1�˛/z2
n�1 is valid in D. We have

j2n.1�˛/z2
n�1j � 2n.1�˛/ for jzj � 1 and if ˛ > 1,

P
2n.1�˛/ converges. Hence by the

Weierstrass M -test the power series of f 0 converges uniformly on D. This proves that if
˛ > 1 the restriction f jT is differentiable and its derivative is f 0jT.

Comment. It can be shown that when 0 < ˛ � 1 the restriction f jT is a nowhere
differentiable curve. Compare the following graphs which render close approximations to
this curve for ˛ D 1:3 (left) and ˛ D 0:8 (right):
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Problem 5. Imitate the proof of Theorem 10.5 to show that every closed subset of T is the
singular set of some holomorphic function in D.

Let E be a non-empty closed subset of T. If E D fq1; : : : ; qkg is finite, the functionPk
nD1 1=.z � qn/ 2 O.D/ has the singular set E. So let us assume E is infinite. Take a

dense sequence fqngn�1 in E, making sure that each isolated point of E (if any) appears
infinitely often in this sequence. This is possible because E has at most countably many
isolated points. For each n take a point pn 2 C ∖ E such that jpn � qnj < 1=n. Since
E is closed, the accumulation points of the sequence fpngn�1 all belong to E. We claim
that in fact every q 2 E is an accumulation point of fpng. If q is not an isolated point of
E, the density gives a subsequence fqnj

g converging to q. It follows from jpnj
� qj �

jpnj
� qnj

j C jqnj
� qj < 1=nj C jqnj

� qj that pnj
! q as j ! 1. On the other

hand, if q is an isolated point of E, by the construction it appears infinitely often in the
sequence fqng, so there is a subsequence fqnj

g taking the constant value q. It follows from
jpnj
� qj D jpnj

� qnj
j < 1=nj that pnj

! q as j !1. This proves the claim.

Now by the Weierstrass product theorem for general open sets (Theorem 8.25) there is an
f 2 O.C∖E/ which vanishes precisely along fpng. The restriction of f to D has E as its
singular set. Clearly every point of T ∖E � C∖E is a regular point of f . If some q 2 E
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were regular, we could extend f holomorphically to an open disk D centered at q. Then q
would be an accumulation point of the zeros of f , so by the identity theorem f D 0 in D
hence in C∖E.

Problem 6. According to a theorem of Vivanti and Pringsheim (1893-1894), if f .z/ DP1
nD0 an z

n has radius of convergence 1 and an � 0 for all n, then 1 2 T is a singular
point of f . Prove this result by completing the following outline: Assume f extends
holomorphically to a neighborhood of 1. Then the power series of f centered at 1

2
would

converge in the disk D.1
2
; 1
2
C "/ for a small " > 0. Hence f .z/ D

P
bn.z �

1
2
/n for

jz � 1
2
j < 1

2
C ", where bn D 1

nŠ
f .n/.1

2
/ can be expressed as an infinite series involving

the an. Substitute this expression for bn and switch the order of summation to verify that
f .x/ D

P
an x

n for real 1 < x < 1C ", which would be a contradiction.

Let us follow the suggested outline. Assume by way of contradiction that 1 is regular
and extend f holomorphically to an open disk B centered at 1. For small " > 0 the disk
D.1

2
; 1
2
C "/ is contained in D [ B , so f has a power series representation of the form

f .z/ D
P1
nD0 bn.z �

1
2
/n for jz � 1

2
j < 1

2
C ". Here
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1
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It follows that for real 1 < x < 1C ",

f .x/ D
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nD0
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2
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�n
:

Since all terms in this double series are positive (this is where we use the assumption
ak � 0), we can switch the order of summation to obtain

f .x/ D

1X
kD0

h kX
nD0

 
k

n

!�1
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�k�n�
x �

1

2

�n
„ ƒ‚ …

binomial expansion of .x�
1
2
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1
2
/k

i
ak D

1X
kD0

akx
k:

This is a contradiction because the power series
P
akz

k , having the radius of convergence
1, must diverge at every z with jzj > 1.


