Math 704 Problem Set 6 Solutions

Problem 1. Suppose f € O(DD) and the sequence { f ™ (0)},>1 grows at most exponentially
fast, i.e., there is a constant A > 1 such that | f®(0)| < A” for all n > 1. Show that f
extends to an entire function.

Let f(z) = Y o yanz" for|z| < 1. By the assumption,

L/0)] (”)(0)| n o A
lan| = o py :> 0 < |an|"" < (n!)L/n
for all n. Since (n!)!/" is easily seen to tend to infinity as n — oo, it follows that
limp— oo |@n]|'/" = 0. Thus, the radius of convergence R = 1/1im,_ oo |an|'/" of the

power series of f is +00. As such, this power series provides an extension of f to an entire
function.

Problem 2. Let f be a holomorphic function defined in a neighborhood of the origin, say
D(0, r), which satisfies

f22) = (f(2))? whenever |z| < r.

Use this functional equation to show that f can be extended to an entire function. Can you
determine all such entire functions explicitly?

Take z € C and find the smallest integer n > 0 such that |z|/2" < r. Set

o= (1(5)"

Observe that the right side of (I) remains unchanged if you replace n by any integer
greater than n. In fact, if |z|/2F < r, then f(z/2F) = f(2z/2%*t") = (f(z/2F+1))? s0
(f(z/25)" = (f(z/2 )"

Thus, we have a well-defined function F : C — C which is holomorphic by (I) (if
n works for some z, the same n works for all points sufficiently close to z). Moreover,
F(z) = f(2)for|z| < r since we can take n = 0 in this case. Note that by (1)) the functional
equation F(2z) = (F(z))? still holds for all z € C. In particular, F(0) = (F(0))2, so F(0)
is either O or 1.

To find all such F, we consider two cases:

Case 1. F(0) = 0. In this case F must be identically zero. Otherwise, let m =
ord(F,0) = ord(f,0) > 1 and observe that in the equation F(2z) = (F(z))? the left side
has a zero of order m at the origin while the right side has a zero of order 2m at the origin.
Contradiction!

Case 2. F(0) = 1. In this case F has no zeros in C. In fact, if F(p) = 0 for some p
(necessarily p # 0), then (F(p/2"))?" = F(p) = 0so F(p/2") = 0 foralln > 0. By
continuity, this implies ' (0) = 0, which is a contradiction. Now F, being a non-vanishing
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entire function, must be of the form F = exp(G) for some G € O(C) with G(0) = 0.
Since
exp(G(2z2)) = F(2z) = (F(2))* = exp(2G(z)) forall z € C,

we have G(2z) — 2G(z) = 2nxin for an integer n (independent of z). In view of G(0) = 0,
we must have n = 0. Writing G(z) = Y ax z* and imposing the equation G(2z) = 2G(z)
then shows that ) ag 2kzk =2 > ag zk for all z, so 2ka; = 2ay for all k > 0. This gives
ar = 0 for all k > 0 other than k = 1. Thus, G is linear of the form G(z) = a;z and
F(z) = exp(a,z) for an arbitrary a; € C.

Problem 3. The power series f(z) = Y v z2 =z + 22+ z* + z8 + -+ has radius of
convergence 1, so f € O(D). By Hadamard’s gap theorem, T is the natural boundary of f.
Verify this directly by showing that lim,_,; f(re?™'*) = oo for every dyadic rational ¢, i.e.,
those of the form ¢ = a/ 2% for integers a, b.

First observe that lim,_.; f(r) = +oo. In fact, given any integer N > 0, since
lim, Z;V:O r?" = N + 1, we can find a sufficiently small § > O suchthat 1 —§ <r < 1

implies f(r) > 2;11\;0 r?" > N. This can be interpreted as saying that the radial limit of f
at 1 (the 2°-th root of unity) is infinite.

Now the definition of f shows that f(z?) = z2 +z* + 28 + ... = f(z) — z, or
f(z) = z + f(z?). Using this relation, we see that if the radial limit of f at the 2"-th roots
of unity is infinite, then the radial limit of f at the 2"*!-st roots of unity is also infinite. It
follows inductively that the radial limit of f at every z € T for which z2" = 1 for some
n > 0 must be infinite. All such points are singular points of f and they form a dense subset
of T. Since the singular set is closed, it follows that every point of T is singular, i.e., T is
the natural boundary of f.

Problem 4. Fix o« > O and let f(z) = Y oo ,27"*z%". Show that

(1) The power series has radius of convergence 1, so by Hadamard’s gap theorem, T is the
natural boundary of f € O(D).

We have f(z) = Y 1o dk z*, where ap = 27" if k = 2" forsome n > 0 and ax = 0
otherwise. Hence,
limsup |ax|'* = limsup (27%)2" = limsup 27"* % =2° =1,
k—>00 n—o00 n—o00

where we have used the fact that lim,_. ., 727" = 0. It follows that the radius of
convergence of the power series is 1. By Hadamard’s gap theorem (Theorem 10.9 with
my, = 2"), T is the natural boundary of f.

(ii) f has a continuous extension to the closed unit disk ID. Moreover, if o > 1 then f |t is
differentiable.

Since [27"*z2"| < 27" for |z| < 1 and ) 27"% converges, the Weierstrass M -test
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shows that the power series converges uniformly on D. In particular, it defines a
continuous function on D.

The power series representation f'(z) = Y oo 2"(1=®)z2"~1 j5 valid in D. We have
|2n(1=@) 72" =1 < 2n(1=) for |z| < 1 and if a > 1, Y 2"(~%) converges. Hence by the
Weierstrass M -test the power series of f” converges uniformly on ID. This proves that if
a > 1 the restriction f'|t is differentiable and its derivative is f’|r.

Comment. It can be shown that when 0 < « < 1 the restriction f|r is a nowhere
differentiable curve. Compare the following graphs which render close approximations to
this curve for « = 1.3 (left) and @ = 0.8 (right):

Problem 5. Imitate the proof of Theorem 10.5 to show that every closed subset of T is the
singular set of some holomorphic function in D.

Let E be a non-empty closed subset of T. If E = {q,...,qx} is finite, the function
Zﬁzl 1/(z — g») € O(D) has the singular set E. So let us assume E is infinite. Take a
dense sequence {g, },>1 in E, making sure that each isolated point of E (if any) appears
infinitely often in this sequence. This is possible because E has at most countably many
isolated points. For each n take a point p, € C ~ E such that |p, — ¢g,| < 1/n. Since
E is closed, the accumulation points of the sequence {p,},>1 all belong to E. We claim
that in fact every g € E is an accumulation point of {p, }. If ¢ is not an isolated point of
E, the density gives a subsequence {g,; } converging to g. It follows from |p,, — ¢q| <
|Pn; —Gn;| +1an, —ql < 1/nj + |q,, —q| that p,, — q as j — oo. On the other
hand, if ¢ is an isolated point of E, by the construction it appears infinitely often in the
sequence {¢y |, so there is a subsequence {q, ; } taking the constant value g. It follows from
|Pn; —ql = |pn; —qn,;| <1/n; that p,, — q as j — oo. This proves the claim.

Now by the Weierstrass product theorem for general open sets (Theorem 8.25) there is an
f € O(C ~\ E) which vanishes precisely along { p, }. The restriction of f to D has E as its
singular set. Clearly every point of T \\ E C C \ E is aregular point of f. If someq € E
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were regular, we could extend f holomorphically to an open disk D centered at ¢. Then ¢
would be an accumulation point of the zeros of £, so by the identity theorem f = 0in D
hence in C \ E.

Problem 6. According to a theorem of Vivanti and Pringsheim (1893-1894), if f(z) =
Z;C;O a, z" has radius of convergence 1 and a,, > 0 for all n, then 1 € T is a singular
point of f. Prove this result by completing the following outline: Assume f extends
holomorphically to a neighborhood of 1. Then the power series of f centered at % would

converge in the disk D(3, 5 + ¢) for a small ¢ > 0. Hence f(z) = Y b,(z — )" for
|z — %| < % + ¢, where b,, = % f (")(%) can be expressed as an infinite series involving
the a,. Substitute this expression for b, and switch the order of summation to verify that
f(x) =) a,x"forreal 1 < x < 1+ ¢, which would be a contradiction.

Let us follow the suggested outline. Assume by way of contradiction that 1 is regular
and extend f holomorphically to an open disk B centered at 1. For small ¢ > 0 the disk
]D)(%, % + ¢) is contained in D U B, so f has a power series representation of the form

f(z) =Y grobn(z—3)" for |z — 3| < 1 + &. Here
1 1
by = _f(”)(_)

n! 2
- %Zk(k— e tk—n+1) ax (%)k_"
‘k=n
g ) =2 (a6

k=n
It follows that forreal 1 < x < 1 + ¢,

=33 =L (1) () (-3

Since all terms in this double series are positive (this is where we use the assumption
ar > 0), we can switch the order of summation to obtain

=3 [ (5 3) 7 (- ) T = L

k=0

binomial expansion of (x— % + % )k

This is a contradiction because the power series Y azz*, having the radius of convergence
1, must diverge at every z with |z| > 1.



