Math 704 Problem Set 5 due Monday 3/17/2025

Problem 1. Let *K* be a compact subset of the unit circle **T**. If $K = \mathbf{T}$, every polynomial *P* satisfies $|P(0)| \leq \sup_{z \in K} |P(z)|$ by the maximum principle. If $K \neq \mathbf{T}$, this can fail dramatically. Show that in this case for every $\varepsilon > 0$ there is a polynomial *P* with P(0) = 1 such that $\sup_{z \in K} |P(z)| < \varepsilon$. (Hint: Use Runge's theorem on *K* for a suitable $f \in \mathcal{O}(\mathbb{C}^*)$.)

Problem 2. Show that there is a sequence $\{P_n\}$ of polynomials such that

$$\lim_{n\to\infty} P_n(z) = \begin{cases} 1 & \text{if } \operatorname{Im}(z) > 0\\ 0 & \text{if } \operatorname{Im}(z) = 0\\ -1 & \text{if } \operatorname{Im}(z) < 0. \end{cases}$$

Can you achieve the additional property

$$|P_n(z)| \le 1$$
 for every $z \in \mathbb{D}$ and $n \ge 1$?

Problem 3. Is there a sequence of polynomials which tends to 0 compactly in the upper half-plane but does not have a limit at any point of the lower half-plane?

Problem 4. Deduce Mittag-Leffler's Theorem 9.4 for an open set *U* from Runge's Theorem 9.18 by completing the following outline: Let $\emptyset = K_0 \subset K_1 \subset K_2 \subset \cdots$ be a nice exhaustion of *U*. For $n \ge 1$, let Q_n be the finite sum of the principal parts $P_k(1/(z-z_k))$ over all *k* such that $z_k \in K_n \setminus K_{n-1}$. For each $n \ge 2$, find a rational function R_n with poles outside *U* such that $|Q_n - R_n| \le 2^{-n}$ on K_{n-1} . Show that $f = Q_1 + \sum_{n=2}^{\infty} (Q_n - R_n)$ is a meromorphic function in *U* with the principal part $P_k(1/(z-z_k))$ at each z_k , and with no other poles.

Problem 5. Let $K \subset \mathbb{C}$ be compact and connected. Show that every connected component of $\widehat{\mathbb{C}} \setminus K$ is simply connected.

Problem 6. Let $U, V \subset \mathbb{C}$ be simply connected domains with $U \cap V \neq \emptyset$. Show that every connected component of $U \cap V$ is simply connected. (Hint for both problems 5 and 6: Use the fact that simple connectivity of a domain Ω is equivalent to $\widehat{\mathbb{C}} \setminus \Omega$ being connected, or to $H_1(\Omega) = 0$.)