Math 704 Problem Set 4 due Monday 3/3/2025

In the following problems Λ is a given lattice in \mathbb{C} and $\wp = \wp_{\Lambda}$ is the Weierstrass elliptic function associated with Λ .

Problem 1. Suppose $f \in \mathcal{M}(\mathbb{C}, \Lambda)$ has poles of order 2 along Λ and no other poles. Show that $f = a_{\emptyset} + b$ for some constants a, b with $a \neq 0$. (Hint: Use res(f, 0) = 0 to verify that the principal part of f at every $\omega \in \Lambda$ is $a/(z - \omega)^2$ for some $a \neq 0$ independent of ω .)

Problem 2. Recall that *E*₂ is the Weierstrass elementary factor

$$E_2(z) = (1-z) \exp\left(z + \frac{z^2}{2}\right).$$

(i) Show that the *Weierstrass* σ -function associated with Λ , defined by the infinite product

$$\sigma(z) = z \prod_{\omega \in \Lambda^*} E_2\left(\frac{z}{\omega}\right),$$

converges compactly in the plane, so $\sigma \in O(\mathbb{C})$.

(ii) Use logarithmic differentiation to show that $-(\sigma'/\sigma)' = \wp$.

Problem 3. Consider the lattices $\Lambda = \langle \omega_1, \omega_2 \rangle = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ and $\Lambda' = \langle \omega'_1, \omega'_2 \rangle$, with $\operatorname{Im}(\omega_2/\omega_1) > 0$ and $\operatorname{Im}(\omega'_2/\omega'_1) > 0$. Show that $\Lambda = \Lambda'$ if and only if

$$\begin{bmatrix} \omega_2' \\ \omega_1' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \omega_2 \\ \omega_1 \end{bmatrix}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Problem 4. Show that there is a linear map $z \mapsto \alpha z$ carrying $\Lambda' = \langle 1, \tau' \rangle$ onto $\Lambda = \langle 1, \tau \rangle$ if and only if

$$\tau' = \frac{a\tau + b}{c\tau + d}$$
 for some $a, b, c, d \in \mathbb{Z}$ with $ad - bc = 1$.

Prove that in this case

$$\alpha|^2 = \frac{\mathrm{Im}\,\tau}{\mathrm{Im}\,\tau'}$$

and

$$\wp_{\Lambda'}(z) = \alpha^2 \wp_{\Lambda}(\alpha z).$$

(Hint: Assuming there is an $\alpha \neq 0$ with $\alpha \Lambda' = \Lambda$, use problem 3. For the last claim on the \wp -functions, use problem 1.)

Problem 5. Think of the invariants g_2, g_3 of the lattice $\Lambda = \langle 1, \tau \rangle$ as functions of τ in the upper half-plane. Show that

$$g_2\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^4 g_2(\tau)$$
$$g_3\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^6 g_3(\tau)$$

whenever $a, b, c, d \in \mathbb{Z}$ and ad - bc = 1. (Hint: Use problem 4 and the series definitions of g_2, g_3 .)

Problem 6. Let $\tau = e^{i\pi/3}$. Show that the invariant $g_2(\tau)$ is zero.