
Math 704 Problem Set 3 Solutions

Problem 1. In Example 9.2 we constructed a meromorphic function f in C with the
principal part 1=.z � n/ at every n 2 Z, and with no other poles:
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Show that in fact f .z/ D � cot.�z/.

For any r > 0 we showed that the tail g.z/ D
P
jnj�2r.1=.z � n/ C 1=n/ converges

uniformly in D.0; r/ and defines a holomorphic function there. It is therefore legitimate
to find g0 in D.0; r/ by differentiating the series term-by-term. Since f .z/ D 1=z CP
0<jnj<2r.1=.z � n/C 1=n/C g.z/, it follows that the formula
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holds in D.0; r/ away from the poles z D n for which jnj < r . Since r > 0was arbitrary, we
conclude that f 0.z/ D �

P
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2 for all z 2 CrZ. But in problem 4 homework 1
we established the partial fraction expansion �2= sin2.�z/ D

P
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This shows f 0.z/ D ��2= sin2.�z/ in C r Z. Since C r Z is connected, it follows that
f .z/ D � cot.�z/C C for some constant C .

To find C , we look at the Laurent series of each side near the origin. We have f .z/ D
1=z C
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n¤0.1=.z � n/C 1=n/, where the series is holomorphic in a small neighborhood

of the origin (in fact in D) and takes the value zero there. Thus, f .z/ D 1=z CO.z/ near
the origin. On the other hand,
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which shows � cot.�z/ D 1=z � .�2=3/z CO.z3/ near the origin. Since both the Laurent
series of f .z/ and � cot.�z/ are missing constant terms, it follows that C D 0.

Problem 2. Prove that
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defines a meromorphic function in C. Identify the poles and principal parts of f .
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As usual, convergence is shown using the Weierstrass M -test: Fix any r > 0 and note that
if jzj < r and jnj � 2r , then
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Since
P
n¤0 jnj

�3 < C1, the series
P
jnj�2r 1=.z

3 � n3/ converges uniformly in D.0; r/
to a holomorphic function g. Hence f .z/ D
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meromorphic function in D.0; r/. Since r was arbitrary, f 2M.C/.

The poles of f are the roots of the equation z3 � n3 D 0 for integer n. They are of the
form n; n�; n�2, where � D e2�i=3. The principal part of f at z D 0 is clearly 1=z3. When
n ¤ 0, the identity

z3 � n3 D .z � n/.z � n�/.z � n�2/

shows that the principal parts at z D n, z D n�, and z D n�2 are
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respectively.

Problem 3. Construct, using an explicit infinite series, a meromorphic function in C
with the principal part 1=.z � logn/ at logn for every integer n � 1, and with no other
poles.

For n � 2, let Qn.z/ be the degree n Taylor polynomial of 1=.z � logn/ centered at 0:
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We claim that the series
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defines a function with the desired property. To see this, fix any r > 0 and note that if
jzj < r and n � e2r” logn � 2r , thenˇ̌̌̌
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By the Weierstrass M -text, the seriesX
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converges uniformly in D.0; r/ to a holomorphic function g. Hence
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represents a meromorphic function in D.0; r/ with the principal part 1=.z � logn/ at
z D logn if n < er . Since r was arbitrary, f 2M.C/ has the desired property.


