
Math 704 Problem Set 2 Solutions
Problem 1.

(i) Construct an entire function with simple zeros at the points logn .n � 1/, and with
no other zeros.

Notice that the first zero is at log 1 D 0. The Weierstrass product theorem (Theorem
8.21), with the choice dn D n, shows that
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is an entire function with the desired property. No canonical product with fixed
dn D d would work because

P
1=.logn/dC1 is divergent for every d � 0. However,

the choice dn D n is not necessary, as something like dn D blognc would also work.
In fact, you can easily check that this choice works for any Weierstrass product, no
matter what the sequence of zeros might be.

(ii) Construct an entire function with a zero of order n at the point n .n � 1/, and with
no other zeros.

Looking at the condition of Theorem 8.21, it suffices to find an integer d � 0 such
that the sum�r
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converges for any given r > 0. Clearly d D 2 will do, showing that
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is an entire funtion with the desired property.

Problem 2. Suppose U � C is a simply connected domain and f 2 O.U / is not identically
zero. Assume there is an integer k � 2 that divides the order of every zero of f . Show that
f has a holomorphic k-th root in U , i.e., f D gk for some g 2 O.U /.
Arrange the distinct zeros of f in a (finite or infinite) sequence fzng which has no
accumulation point in U . Let mn D ord.f; zn/. By the assumption, `n D mn=k is an
integer for all n. Use the Weierstrass product theorem for general domains (Theorem 8.25)
to find an h 2 O.U / with a zero of order `n at zn for every n, and no other zeros. Then
hk vanishes precisely along fzng and ord.hk; zn/ D k ord.h; zn/ D k`n D mn. This shows
that the ratio f=hk has removable singularities at every zn, so it extends to a non-vanishing
holomorphic function � in U . Since U is simply connected, � has a holomorphic k-th root
 in U . The product g D h 2 O.U / now satisfies gk D hk k D hk� D f .
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Problem 3. Let f 2 O.C/ and M.r/ D supjzjDr jf .z/j. Show that f is a polynomial if
and only if

(1) lim sup
r!C1

logM.r/
log r

< C1:

If f is a polynomial of degree d , then M.r/ � const: rd so logM.r/ � const:Cd log r
for all r > 0 and (1) clearly holds. Conversely, suppose (1) holds. Then there is a d > 0

such that logM.r/= log r � d or M.r/ � rd for all large r . By Cauchy’s estimates,
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for all large r . If n > d , it follows by letting r !1 that f .n/.0/ D 0. This shows that
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is a polynomial of degree at most d .

Problem 4. Prove the following analog of Jensen’s formula for meromorphic functions: Let
f be meromorphic in D.0; R/ with no zeros or poles at z D 0 or on the circle jzj D r < R.
Let z1; z2; : : : ; zk and p1; p2; : : : ; pm denote the zeros and poles of f in D.0; r/, each
repeated as many times as its order. Then
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We may assume r D 1; otherwise consider f .rz/ on the disk D.0; R=r/ with zeros and
poles at zn=r and pn=r . The finite Blaschke product
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has zeros at the zn and poles at the pn, all of the same order as f . Hence h D f=B has
removable singularities and extends to a non-vanishing holomorphic function in D.0; 1C "/
for some " > 0, so log jhj is harmonic in D.0; 1C "/. It follows that
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log jh.eit/j dt .since jB.z/j D 1 for jzj D 1/

D log jh.0/j .by the mean value property of log jhj/
D log jf .0/j � log jB.0/j

D log jf .0/j �
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which is the formula (2) for r D 1.

Problem 5. Suppose f and g are bounded holomorphic functions in D. If

f .e�1=n/ D g.e�1=n/ for all n � 1;

show that f D g everywhere in D.

The function f � g 2 O.D/ is bounded and vanishes along the sequence zn D e�1=n. Since
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the series
P1
nD1.1 � jznj/ diverges. It follows from Theorem 8.34 (see also Example 8.35)

that f � g is identically zero.

Problem 6. Let H denote the upper half-plane fz 2 C W Im.z/ > 0g and ftng be an
increasing sequence of positive numbers with limn!1 tn D C1. Find a necessary and
sufficient condition on ftng for the existence of a bounded f 2 O.H/ with simple zeros
along the sequence fi=tng. How would the answer change if we placed the zeros along the
sequence ftn C ig instead?

We use the conformal isomorphism ' W H ! D given by w D '.z/ D .i � z/.i C z/ to
transfer the problem to the unit disk. Evidently f 2 O.H/ is bounded with simple zeros
along fzng if and only if f ı '�1 2 O.D/ is bounded with simple zeros along wn D '.zn/.
It follows from Theorem 8.34 that a necessary and sufficient condition for the existence of
such f is

P
.1 � jwnj/ < C1.

If zn D i=tn, then
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This gives
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;

which is comparable to 1=tn since tn ! C1. Thus, the desired condition in this case isP
1=tn < C1.

If, on the other hand, zn D tn C i , then
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where we have used the Taylor expansion .1C x/˛ D 1C ˛x CO.x2/ near x D 0. Thus,
1 � jwnj is comparable to 1=t2n and the desired condition in this case is

P
1=t2n < C1.

Comment 1. An alternative path to the second case is to first observe that since

1 �
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2

1 � jwnj
D 1C jwnj � 2;

the terms 1 � jwnj2 and 1 � jwnj are comparable and we may as well look at the seriesP
.1 � jwnj

2/ (useful trick: It’s often easier to work with absolute value squared). Now
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which is comparable to 1=t2n , giving the same condition as before.

Comment 2. The two cases of the problem contrast the difference between radial and
tangential convergence to the boundary. In the first case wn ! 1 along the real line while in
the second case wn ! �1 along a circle tangent to @D at �1.


