Math 704 Problem Set 1 Solutions

Problem 1. Prove the following form of Cauchy’s criterion for convergence of infinite
products: []-2, a» converges if and only if for every & > 0 there is an integer N such that

|]_[:=ma,,—l| < & whenever k > m > N.

First assume [],—, a, converges and let ¢ > 0 be arbitrary. By continuity of the function
(z,w)—~ z/wat(l,]) wecanfindaO <6 < lsuchthat|z—1| <dand lw—1| < §
imply |z/w — 1| < &. By the convergence of [];~, a, we can find N > 1 such that
IT15.,,an — 1| < 8 for all m > N (in particular a, # O for all n > N). Thus, if
k>=m=N,

Now assume the infinite product satisfies the given Cauchy condition. Clearly a, — 1
as n — 00, so there is an ng such that a, # 0 for all n > no. Take any ¢ > 0 and
find 0 < § < 1 such that |z — 1| < § implies |Logz| < ¢. Find N > ny such that

|]_[ﬁ=ma,,—1| < 6 whenever kK > m > N. Then

‘;Logan = ‘Log( ﬁ an)

Since ¢ was arbitrary, this shows that {Z§=n0 Loga,} is a Cauchy sequence. Thus,

Z:ozno Log a, converges and it follows from Lemma 8.7 that [ [, a, converges.

< €.

Question. Can you find a direct proof for the second implication that does not involve
logarithms?

Problem 2. Consider a sequence {C,}52, of concentric circles of increasing radii. For each
n, the circle C,, is inscribed in a regular (n + 2)-gon and circumscribes a regular (n + 1)-gon.
Determine whether or not the radius of C,, tends to infinity as n — oo.




2

The regular (n + 2)-gon is between C, and C, 4. If r,, denotes the radius of C,, we have
T
cos B, = ——,
Fn+1

where 8, = 7 /(n + 2) (see the figure). Hence

Fn+1 = Fn Secen»

which gives the product formula

n
Fnt1 =1 H sec 0.
k=1

Thus, to decide whether or not r, — +o00, we need to determine the convergence or
divergence of the infinite product [ 7~ sec k. As x — 0,

P : 1= 4ot
secx — 1 = —1= 1= x4,
COS X 1 —x2/2+ O(x%) 2
which shows
const.
| sec O — 1| < const. 9,%5 2

for large k. Since Y ;o 1/k* < +00, we conclude that Y -, | sec 6 — 1| converges. It
follows that []7=, sec O converges, so {r,} tends to a finite limit.

Problem 3. Let f(z) = [0, (1 + z2").

(i) Show that the infinite product converges compactly in D, so f € O(D).
If |z] <r <1, then
|Z|2” < r2” < P

for every n > 0. Since ) _ r” converges, the Weierstrass M -test shows that fo’:o z2"
converges compactly in D. Hence [ 7o, (1 + z2") converges compactly in D.

(ii) Let pr(z) = ]_[§=0(1 + z2"). Show that pi(z) = (1 + z) pr_1(z?), and justify the
functional equation f(z) = (1 + z) f(z?).
We have
pe(x) = (L4 2)(1+2)(1 + 2% (1 +2)

k—1
= (1 +2) [0+ E) =0+ 2)pa @),
n=0

Letting k — 00, we obtain f(z) = (1 + z) f(z?) for every z € D.



(iii) Conclude that f(z) = 1/(1 — z2).

Write f(z) = Y nedn 2", where ag = f(0) = 1 by the infinite product formula for
f. By the functional equation in (ii),

o0 o o o0
E a,z" = (1+2) E a, z*" = E a, 22" + E a, 22",
n=0 n=0 n=0 n=0

Comparing the coefficients of similar powers of z gives a, = d,, = as,4+; for all
n>0,s0a, =ao=1foralln > 0. Thus, f(z) =Y ro,z" =1/(1—2).

(iv) What does the resulting identity
AI+2)0+22)A+zH0 +28) =1 4+z+224+23+ -
for |z| < 1 tell you about the binary expansion of integers?

The right side contains every positive integer power of z once with coefficient 1, so the
same must be true of the left side. It easily follows that every positive integer can be
represented uniquely (up to permutation) as a sum of distinct non-negative powers of 2.

Problem 4. In this exercise you will prove Euler’s product formula (1734):

o0 22
sinz =z H(l_n2n2) z € C.

n=1

The proof is deliberately divided into small steps for more clarity.

(i) Show that the above infinite product converges compactly in C to an entire function f
with a simple zero at wn for every n € Z, and with no other zeros.

If |z] < r, then

2

z 2

r

w2n%| = m2n?

Since Y 1/n? converges, the Weierstrass M -test shows that > oo, z"/(7w?n?) con-
verges compactly in C. Hence, []o,(1 — z2/(7?n?)) converges compactly in C
to an entire function. It follows that f(z) = z[[r—,(1 — z2/(%?n?)) is an entire
function, with f(z) = O if and only if z = 0 or 1 — z2/(n?n?) = 0 for some
n > 1. Equivalently, f(z) = 0 if and only if z = nx for some integer n. All
zeros of f are simple because they occur as simple zeros of the factors z and
1 —22/(7*n?) = (1 — z/(zn))(1 + z/(7n)).

(i1) Show that sinz/ f(z) has removable singularities at every w7, so it is an entire function
with no zeros. Conclude that for some entire function g,

00 2
(1) sinz = 8@ z H(l—ninz).
n=1




Since sin z also has simple zeros precisely at the integer multiples of 7, the meromorphic
function sinz/f(z) has removable singularities at the wn, so it extends to a non-
vanishing entire function. Since C is simply connected, we can write this entire function
as exp(g) for some g € O(C) which is unique up to addition of an integer multiple of
27i. This proves ().

(iii) Use logarithmic differentiation to show that

 Q— 1 1
2 tz=g - ,
(2) cotz g(z)+z+’;(z—nn+z+nn)

and hence

3) g'(z) = -

sin? z

e 1
+ n; (z —mn)?

Show that the right hand side is invariant under the translation z +— z + m, that is,
g"(z + ) = g"(z). Prove the estimate

1 ad 1 .
) |g”(2)| = sinh? y 2 Z m (z=x+1y)
n=0

provided that 0 < x < . Use Liouville’s theorem to conclude that g” = 0 and hence
g’ is constant.

By logarithmic differentiation of (TJ),

(sinz)’ (eg(z))’ 1 + Z (1 —z2/(x%n?))

sinz 8@ 1 —2z2/(n2n2) ’
S0

-2z

1
tz = o — -
g<z>+z+2n2nz_zz

1
=8@+7 +Z(z—nn+z+ﬂn)'

More precisely, this means that the sequence

1 "( 1 1 )
cotz — — — +
z ot Z—Tn Z+mn

converges compactly in C to the entire function g’ as k — oo (the principal parts of
cotz at z = mn eventually cancel out with those of the infinite series). Differentiating




term-by-term, which is legitimate under compact convergence, we obtain

) / 1 00 1 1
g (Z) = (COtZ) + Z_2 +,12:;((Z—7Tn)2 + (Z —|—7T1’l)2) .

This is equivalent to (3). The function on the right side of (3] is invariant under the
translation z — z 4 m. This is trivial for the infinite series and also holds for the
term —1/ sin® z because sin(z 4+ ) = —sin z. Thus, g” is -periodic in the sense that
g'(z+m)=g"(z)forall z € C.

Note thatif z = x 4 iy, then
1 . . 1, . . 1
|SiIlZ|2 — Z|€lz _e—lzl2 > Z||eZZ| o |e—zz|‘2 _ Z|€—y _€y|2 — Sinhzy.

Moreover, if 0 < x < m, then |z — wn|*> = (x — 7n)? + »? is bounded below by
72n? + y?ifn < 0and by n%(n — 1)2 + y?if n > 1. Applying these estimates to the
equation (3)), we obtain (4)).

Now |g”| is trivially bounded on the closed rectangle [0, 7] x [—1, 1]. Since the
right hand side of (@) is bounded above by 1/ sinh*(1) + (2/72) 3o n=2 for |y| > 1,
it follows that |g”| is bounded on the strip [0, 7] x (—o00, +00) and hence on C by
m-periodicity. Liouville’s theorem then implies g” is constant. Since g”(x +iy) — 0
as |y| — +oo by (@), we must have g” = 0. Hence g’ is constant.

(iv) The right hand side of (2)) is an odd function. Show that this gives g’ = 0, so g is
constant. Use (ii) to conclude that g = 0.

The first claim is clear because cot z is odd. Since 1/z and the infinite series in (2)) are
also odd, the same must be true of g’. But the only constant odd function is zero, hence
g’ = 0 and g is constant. By (T,

soexp(g(z)) = exp(g(0)) = 1 for all z € C. After adding an integer multiple of 277,
we may arrange g = 0.

Problem 5. Use the results of the previous problem to calculate

s 1 o 1
I (1 +n_2) wd 3
n=1 n=1
Put z = i in Euler’s product formula to get

sin(im) = im [ ] (1 + %) :

n=1



or

or

To find the infinite sum, we use the equation (3) in the previous problem. Since

72 2 72
sin? z = 22 (l 3 + 0(24)) =72 (1 Y + 0(24))

as z — 0, we have the Laurent series expansion

1 1 1
==+ -+ 0(?
sinz  z2 3 @)

near z = 0. It follows from (3) that

1" _ 1 3 ! !
0=¢g"(z) = —5 + 0(22) +};((2—7‘U’[)2 + (Z+7Tn)2).

Letting z — 0, we obtain
1 2 &1 21 n?
— 4+ — — =0 or — = —.

Problem 6. Use the identity sin(2x) = 2 sin x cos x to show that

= b4 2

H cos (2_") = —.

n=2 T
Combine with the identity cos(2x) = 2 cos? x — 1 to deduce Veita’s formula (1579):

2 V2 V242 Y24+ V242
= .

T

We have
sin(2x) = 2sin x cos x
= 2%5sin(x/2) cos(x/2) cos x
= 23sin(x/4) cos(x/4) cos(x/2) cos x
k

; 24+ sin(x/25) [ ] cos(x/2M).

n=0



SO

k .
H cos(x/2") = sin(2x)

© 2kFlgin(x/2k)

n=0
Substituting x = /4 gives
k+2 |
ny _—_
gcos(n/z ) = 2k+1 sin(n/2k+2)'
Since sin(/2k%2) /(7 /25+2) — 1 or 2¥*1sin(/2%%2) — 7/2 as k — oo, it follows that

1 2

L[zcos(n/zn) ==

If we start with the value cos(r/4) = +/2/2 and use the identity

cos(x) = 4/ l—l—#s(zx)’

we can inductively compute all the factors cos(;r/2") in the above infinite product. For

example,
cos(/8) = [1+ cozs(rr/4) _ 2 -;— V2
cos(/16) = [1+ cozs(n/8) _ 2+ 22 + V2

and so on. Substituting these values into the above infinite product will give Veita’s formula.




