Math 704 Problem Set 1 Solutions

Problem 1. Prove the following form of Cauchy's criterion for convergence of infinite products: $\prod_{n=1}^{\infty} a_n$ converges if and only if for every $\varepsilon > 0$ there is an integer N such that $|\prod_{n=m}^{k} a_n - 1| < \varepsilon$ whenever $k \ge m \ge N$.

First assume $\prod_{n=1}^{\infty} a_n$ converges and let $\varepsilon > 0$ be arbitrary. By continuity of the function $(z, w) \mapsto z/w$ at (1, 1) we can find a $0 < \delta < 1$ such that $|z - 1| < \delta$ and $|w - 1| < \delta$ imply $|z/w - 1| < \varepsilon$. By the convergence of $\prod_{n=1}^{\infty} a_n$ we can find $N \ge 1$ such that $|\prod_{n=m}^{\infty} a_n - 1| < \delta$ for all $m \ge N$ (in particular $a_n \ne 0$ for all $n \ge N$). Thus, if $k \ge m \ge N$,

$$\left|\prod_{n=m}^{k} a_n - 1\right| = \left|\frac{\prod_{n=m}^{\infty} a_n}{\prod_{n=k+1}^{\infty} a_n} - 1\right| < \varepsilon.$$

Now assume the infinite product satisfies the given Cauchy condition. Clearly $a_n \to 1$ as $n \to \infty$, so there is an n_0 such that $a_n \neq 0$ for all $n \ge n_0$. Take any $\varepsilon > 0$ and find $0 < \delta < 1$ such that $|z - 1| < \delta$ implies $|\log z| < \varepsilon$. Find $N > n_0$ such that $|\prod_{n=m}^{k} a_n - 1| < \delta$ whenever $k \ge m \ge N$. Then

$$\left|\sum_{n=m}^{k} \operatorname{Log} a_{n}\right| = \left|\operatorname{Log}\left(\prod_{n=m}^{k} a_{n}\right)\right| < \varepsilon.$$

Since ε was arbitrary, this shows that $\{\sum_{n=n_0}^{k} \log a_n\}$ is a Cauchy sequence. Thus, $\sum_{n=n_0}^{\infty} \log a_n$ converges and it follows from Lemma 8.7 that $\prod_{n=1}^{\infty} a_n$ converges.

Question. Can you find a direct proof for the second implication that does not involve logarithms?

Problem 2. Consider a sequence $\{C_n\}_{n=1}^{\infty}$ of concentric circles of increasing radii. For each n, the circle C_n is inscribed in a regular (n + 2)-gon and circumscribes a regular (n + 1)-gon. Determine whether or not the radius of C_n tends to infinity as $n \to \infty$.

The regular (n + 2)-gon is between C_n and C_{n+1} . If r_n denotes the radius of C_n , we have

$$\cos\theta_n=\frac{r_n}{r_{n+1}},$$

where $\theta_n = \pi/(n+2)$ (see the figure). Hence

$$r_{n+1}=r_n\,\sec\theta_n,$$

which gives the product formula

$$r_{n+1} = r_1 \prod_{k=1}^n \sec \theta_k.$$

Thus, to decide whether or not $r_n \to +\infty$, we need to determine the convergence or divergence of the infinite product $\prod_{k=1}^{\infty} \sec \theta_k$. As $x \to 0$,

$$\sec x - 1 = \frac{1}{\cos x} - 1 = \frac{1}{1 - \frac{x^2}{2} + O(x^4)} - 1 = \frac{x^2}{2} + O(x^4)$$

which shows

$$|\sec \theta_k - 1| \le \text{const.} \ \theta_k^2 \le \frac{\text{const.}}{k^2}$$

for large k. Since $\sum_{k=1}^{\infty} 1/k^2 < +\infty$, we conclude that $\sum_{k=1}^{\infty} |\sec \theta_k - 1|$ converges. It follows that $\prod_{k=1}^{\infty} \sec \theta_k$ converges, so $\{r_n\}$ tends to a finite limit.

Problem 3. Let $f(z) = \prod_{n=0}^{\infty} (1 + z^{2^n})$.

- (i) Show that the infinite product converges compactly in \mathbb{D} , so $f \in \mathcal{O}(\mathbb{D})$.
 - If $|z| \leq r < 1$, then

$$|z|^{2^n} \le r^{2^n} \le r^n$$

for every $n \ge 0$. Since $\sum r^n$ converges, the Weierstrass *M*-test shows that $\sum_{n=0}^{\infty} z^{2^n}$ converges compactly in \mathbb{D} . Hence $\prod_{n=0}^{\infty} (1 + z^{2^n})$ converges compactly in \mathbb{D} .

(ii) Let $p_k(z) = \prod_{n=0}^k (1 + z^{2^n})$. Show that $p_k(z) = (1 + z)p_{k-1}(z^2)$, and justify the functional equation $f(z) = (1 + z)f(z^2)$.

We have

$$p_k(z) = (1+z)(1+z^2)(1+z^4)\cdots(1+z^{2^k})$$
$$= (1+z)\prod_{n=0}^{k-1}(1+(z^2)^{2^n}) = (1+z)p_{k-1}(z^2).$$

Letting $k \to \infty$, we obtain $f(z) = (1 + z) f(z^2)$ for every $z \in \mathbb{D}$.

(iii) Conclude that f(z) = 1/(1-z).

Write $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where $a_0 = f(0) = 1$ by the infinite product formula for f. By the functional equation in (ii),

$$\sum_{n=0}^{\infty} a_n z^n = (1+z) \sum_{n=0}^{\infty} a_n z^{2n} = \sum_{n=0}^{\infty} a_n z^{2n} + \sum_{n=0}^{\infty} a_n z^{2n+1}.$$

Comparing the coefficients of similar powers of z gives $a_n = a_{2n} = a_{2n+1}$ for all $n \ge 0$, so $a_n = a_0 = 1$ for all $n \ge 0$. Thus, $f(z) = \sum_{n=0}^{\infty} z^n = 1/(1-z)$.

(iv) What does the resulting identity

$$(1+z)(1+z^2)(1+z^4)(1+z^8)\cdots = 1+z+z^2+z^3+\cdots$$

for |z| < 1 tell you about the binary expansion of integers?

The right side contains every positive integer power of z once with coefficient 1, so the same must be true of the left side. It easily follows that every positive integer can be represented uniquely (up to permutation) as a sum of distinct non-negative powers of 2.

Problem 4. In this exercise you will prove Euler's product formula (1734):

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right) \qquad z \in \mathbb{C}.$$

The proof is deliberately divided into small steps for more clarity.

- (i) Show that the above infinite product converges compactly in \mathbb{C} to an entire function f with a simple zero at πn for every $n \in \mathbb{Z}$, and with no other zeros.
 - If $|z| \leq r$, then

$$\left|\frac{z^2}{\pi^2 n^2}\right| \le \frac{r^2}{\pi^2 n^2}.$$

Since $\sum 1/n^2$ converges, the Weierstrass *M*-test shows that $\sum_{n=1}^{\infty} z^n/(\pi^2 n^2)$ converges compactly in \mathbb{C} . Hence, $\prod_{n=1}^{\infty} (1 - z^2/(\pi^2 n^2))$ converges compactly in \mathbb{C} to an entire function. It follows that $f(z) = z \prod_{n=1}^{\infty} (1 - z^2/(\pi^2 n^2))$ is an entire function, with f(z) = 0 if and only if z = 0 or $1 - z^2/(\pi^2 n^2) = 0$ for some $n \ge 1$. Equivalently, f(z) = 0 if and only if $z = n\pi$ for some integer *n*. All zeros of *f* are simple because they occur as simple zeros of the factors *z* and $1 - z^2/(\pi^2 n^2) = (1 - z/(\pi n))(1 + z/(\pi n))$.

(ii) Show that $\sin z/f(z)$ has removable singularities at every πn , so it is an entire function with no zeros. Conclude that for some entire function g,

(1)
$$\sin z = e^{g(z)} z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right).$$

Since sin z also has simple zeros precisely at the integer multiples of π , the meromorphic function sin z/f(z) has removable singularities at the πn , so it extends to a non-vanishing entire function. Since \mathbb{C} is simply connected, we can write this entire function as $\exp(g)$ for some $g \in \mathcal{O}(\mathbb{C})$ which is unique up to addition of an integer multiple of $2\pi i$. This proves (1).

(iii) Use logarithmic differentiation to show that

(2)
$$\cot z = g'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z - \pi n} + \frac{1}{z + \pi n} \right),$$

and hence

(3)
$$g''(z) = -\frac{1}{\sin^2 z} + \sum_{n=-\infty}^{\infty} \frac{1}{(z - \pi n)^2}.$$

Show that the right hand side is invariant under the translation $z \mapsto z + \pi$, that is, $g''(z + \pi) = g''(z)$. Prove the estimate

(4)
$$|g''(z)| \le \frac{1}{\sinh^2 y} + 2\sum_{n=0}^{\infty} \frac{1}{(\pi^2 n^2 + y^2)} \qquad (z = x + iy)$$

provided that $0 \le x \le \pi$. Use Liouville's theorem to conclude that g'' = 0 and hence g' is constant.

By logarithmic differentiation of (1),

$$\frac{(\sin z)'}{\sin z} = \frac{(e^{g(z)})'}{e^{g(z)}} + \frac{1}{z} + \sum_{n=1}^{\infty} \frac{(1 - z^2/(\pi^2 n^2))'}{1 - z^2/(\pi^2 n^2)},$$

so

$$\cot z = g'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} \frac{-2z}{\pi^2 n^2 - z^2}$$
$$= g'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z - \pi n} + \frac{1}{z + \pi n}\right)$$

More precisely, this means that the sequence

$$\cot z - \frac{1}{z} - \sum_{n=1}^{k} \left(\frac{1}{z - \pi n} + \frac{1}{z + \pi n} \right)$$

converges compactly in \mathbb{C} to the entire function g' as $k \to \infty$ (the principal parts of $\cot z$ at $z = \pi n$ eventually cancel out with those of the infinite series). Differentiating

term-by-term, which is legitimate under compact convergence, we obtain

$$g''(z) = (\cot z)' + \frac{1}{z^2} + \sum_{n=1}^{\infty} \left(\frac{1}{(z - \pi n)^2} + \frac{1}{(z + \pi n)^2} \right).$$

This is equivalent to (3). The function on the right side of (3) is invariant under the translation $z \mapsto z + \pi$. This is trivial for the infinite series and also holds for the term $-1/\sin^2 z$ because $\sin(z + \pi) = -\sin z$. Thus, g'' is π -periodic in the sense that $g''(z + \pi) = g''(z)$ for all $z \in \mathbb{C}$.

Note that if z = x + iy, then

$$|\sin z|^{2} = \frac{1}{4}|e^{iz} - e^{-iz}|^{2} \ge \frac{1}{4}||e^{iz}| - |e^{-iz}||^{2} = \frac{1}{4}|e^{-y} - e^{y}|^{2} = \sinh^{2} y.$$

Moreover, if $0 \le x \le \pi$, then $|z - \pi n|^2 = (x - \pi n)^2 + y^2$ is bounded below by $\pi^2 n^2 + y^2$ if $n \le 0$ and by $\pi^2 (n - 1)^2 + y^2$ if $n \ge 1$. Applying these estimates to the equation (3), we obtain (4).

Now |g''| is trivially bounded on the closed rectangle $[0, \pi] \times [-1, 1]$. Since the right hand side of (4) is bounded above by $1/\sinh^2(1) + (2/\pi^2) \sum_{n=1}^{\infty} n^{-2}$ for $|y| \ge 1$, it follows that |g''| is bounded on the strip $[0, \pi] \times (-\infty, +\infty)$ and hence on \mathbb{C} by π -periodicity. Liouville's theorem then implies g'' is constant. Since $g''(x + iy) \to 0$ as $|y| \to +\infty$ by (4), we must have g'' = 0. Hence g' is constant.

(iv) The right hand side of (2) is an odd function. Show that this gives g' = 0, so g is constant. Use (ii) to conclude that g = 0.

The first claim is clear because $\cot z$ is odd. Since 1/z and the infinite series in (2) are also odd, the same must be true of g'. But the only constant odd function is zero, hence g' = 0 and g is constant. By (1),

$$e^{g(0)} = \lim_{z \to 0} \frac{\sin z}{z} = 1,$$

so $\exp(g(z)) = \exp(g(0)) = 1$ for all $z \in \mathbb{C}$. After adding an integer multiple of $2\pi i$, we may arrange g = 0.

Problem 5. Use the results of the previous problem to calculate

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right) \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Put $z = i\pi$ in Euler's product formula to get

$$\sin(i\pi) = i\pi \prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right),$$

6

or

$$\frac{e^{-\pi} - e^{\pi}}{2i} = i\pi \prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right),$$

or

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right) = \frac{e^{\pi} - e^{-\pi}}{2\pi}.$$

To find the infinite sum, we use the equation (3) in the previous problem. Since

$$\sin^2 z = z^2 \left(1 - \frac{z^2}{6} + O(z^4) \right)^2 = z^2 \left(1 - \frac{z^2}{3} + O(z^4) \right)$$

as $z \to 0$, we have the Laurent series expansion

$$\frac{1}{\sin^2 z} = \frac{1}{z^2} + \frac{1}{3} + O(z^2)$$

near z = 0. It follows from (3) that

$$0 = g''(z) = -\frac{1}{3} + O(z^2) + \sum_{n=1}^{\infty} \left(\frac{1}{(z - \pi n)^2} + \frac{1}{(z + \pi n)^2} \right).$$

Letting $z \to 0$, we obtain

$$-\frac{1}{3} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = 0 \quad \text{or} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Problem 6. Use the identity sin(2x) = 2 sin x cos x to show that

$$\prod_{n=2}^{\infty} \cos\left(\frac{\pi}{2^n}\right) = \frac{2}{\pi}.$$

Combine with the identity $cos(2x) = 2 cos^2 x - 1$ to deduce *Veita's formula* (1579):

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdots$$

We have

$$\sin(2x) = 2 \sin x \cos x$$

= 2² sin(x/2) cos(x/2) cos x
= 2³ sin(x/4) cos(x/4) cos(x/2) cos x
= ...
= 2^{k+1} sin(x/2^k) $\prod_{n=0}^{k} \cos(x/2^{n})$,

so

$$\prod_{n=0}^{k} \cos(x/2^n) = \frac{\sin(2x)}{2^{k+1}\sin(x/2^k)}.$$

Substituting $x = \pi/4$ gives

$$\prod_{n=2}^{k+2} \cos(\pi/2^n) = \frac{1}{2^{k+1} \sin(\pi/2^{k+2})}.$$

Since $\sin(\pi/2^{k+2})/(\pi/2^{k+2}) \to 1$ or $2^{k+1}\sin(\pi/2^{k+2}) \to \pi/2$ as $k \to \infty$, it follows that $\prod_{k=1}^{\infty} \exp(-\pi/2^k) = \frac{1}{2}$

$$\prod_{n=2} \cos(\pi/2^n) = \frac{1}{\pi/2} = \frac{2}{\pi}.$$

If we start with the value $\cos(\pi/4) = \sqrt{2}/2$ and use the identity

$$\cos(x) = \sqrt{\frac{1 + \cos(2x)}{2}},$$

we can inductively compute all the factors $\cos(\pi/2^n)$ in the above infinite product. For example,

$$\cos(\pi/8) = \sqrt{\frac{1 + \cos(\pi/4)}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$
$$\cos(\pi/16) = \sqrt{\frac{1 + \cos(\pi/8)}{2}} = \frac{\sqrt{2 + \sqrt{2} + \sqrt{2}}}{2}$$

and so on. Substituting these values into the above infinite product will give Veita's formula.