
Math 704 Problem Set 1 Solutions
Problem 1. Prove the following form of Cauchy’s criterion for convergence of infinite
products:

Q1
nD1 an converges if and only if for every " > 0 there is an integer N such that

j
Qk
nDm an � 1j < " whenever k � m � N .

First assume
Q1
nD1 an converges and let " > 0 be arbitrary. By continuity of the function

.z; w/ 7! z=w at .1; 1/ we can find a 0 < ı < 1 such that jz � 1j < ı and jw � 1j < ı

imply jz=w � 1j < ". By the convergence of
Q1
nD1 an we can find N � 1 such that

j
Q1
nDm an � 1j < ı for all m � N (in particular an ¤ 0 for all n � N ). Thus, if

k � m � N , ˇ̌̌ kY
nDm

an � 1
ˇ̌̌
D

ˇ̌̌ Q1
nDm anQ1
nDkC1 an

� 1
ˇ̌̌
< ":

Now assume the infinite product satisfies the given Cauchy condition. Clearly an ! 1

as n ! 1, so there is an n0 such that an ¤ 0 for all n � n0. Take any " > 0 and
find 0 < ı < 1 such that jz � 1j < ı implies jLog zj < ". Find N > n0 such that
j
Qk
nDm an � 1j < ı whenever k � m � N . Thenˇ̌̌ kX

nDm

Log an
ˇ̌̌
D

ˇ̌̌
Log

� kY
nDm

an

�ˇ̌̌
< ":

Since " was arbitrary, this shows that f
Pk
nDn0

Log ang is a Cauchy sequence. Thus,P1
nDn0

Log an converges and it follows from Lemma 8.7 that
Q1
nD1 an converges.

Question. Can you find a direct proof for the second implication that does not involve
logarithms?

Problem 2. Consider a sequence fCng1nD1 of concentric circles of increasing radii. For each
n, the circle Cn is inscribed in a regular .nC2/-gon and circumscribes a regular .nC1/-gon.
Determine whether or not the radius of Cn tends to infinity as n!1.
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The regular .nC 2/-gon is between Cn and CnC1. If rn denotes the radius of Cn, we have

cos �n D
rn

rnC1
;

where �n D �=.nC 2/ (see the figure). Hence

rnC1 D rn sec �n;

which gives the product formula

rnC1 D r1

nY
kD1

sec �k:

Thus, to decide whether or not rn ! C1, we need to determine the convergence or
divergence of the infinite product

Q1
kD1 sec �k . As x ! 0,

sec x � 1 D
1

cos x
� 1 D

1

1 � x2=2CO.x4/
� 1 D

x2

2
CO.x4/;

which shows

j sec �k � 1j � const: �2k �
const:
k2

for large k. Since
P1
kD1 1=k

2 < C1, we conclude that
P1
kD1 j sec �k � 1j converges. It

follows that
Q1
kD1 sec �k converges, so frng tends to a finite limit.

Problem 3. Let f .z/ D
Q1
nD0.1C z

2n

/.

(i) Show that the infinite product converges compactly in D, so f 2 O.D/.
If jzj � r < 1, then

jzj2
n

� r2
n

� rn

for every n � 0. Since
P
rn converges, the Weierstrass M -test shows that

P1
nD0 z

2n

converges compactly in D. Hence
Q1
nD0.1C z

2n

/ converges compactly in D.

(ii) Let pk.z/ D
Qk
nD0.1 C z

2n

/. Show that pk.z/ D .1 C z/pk�1.z
2/, and justify the

functional equation f .z/ D .1C z/f .z2/.

We have

pk.z/ D .1C z/.1C z
2/.1C z4/ � � � .1C z2

k

/

D .1C z/

k�1Y
nD0

.1C .z2/2
n

/ D .1C z/pk�1.z
2/:

Letting k !1, we obtain f .z/ D .1C z/f .z2/ for every z 2 D.
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(iii) Conclude that f .z/ D 1=.1 � z/.

Write f .z/ D
P1
nD0 an z

n, where a0 D f .0/ D 1 by the infinite product formula for
f . By the functional equation in (ii),

1X
nD0

an z
n
D .1C z/

1X
nD0

an z
2n
D

1X
nD0

an z
2n
C

1X
nD0

an z
2nC1:

Comparing the coefficients of similar powers of z gives an D a2n D a2nC1 for all
n � 0, so an D a0 D 1 for all n � 0. Thus, f .z/ D

P1
nD0 z

n D 1=.1 � z/.

(iv) What does the resulting identity

.1C z/.1C z2/.1C z4/.1C z8/ � � � D 1C z C z2 C z3 C � � �

for jzj < 1 tell you about the binary expansion of integers?

The right side contains every positive integer power of z once with coefficient 1, so the
same must be true of the left side. It easily follows that every positive integer can be
represented uniquely (up to permutation) as a sum of distinct non-negative powers of 2.

Problem 4. In this exercise you will prove Euler’s product formula (1734):

sin z D z
1Y
nD1

�
1 �

z2

�2n2

�
z 2 C:

The proof is deliberately divided into small steps for more clarity.

(i) Show that the above infinite product converges compactly in C to an entire function f
with a simple zero at �n for every n 2 Z, and with no other zeros.

If jzj � r , then ˇ̌̌̌
z2

�2n2

ˇ̌̌̌
�

r2

�2n2
:

Since
P
1=n2 converges, the Weierstrass M -test shows that

P1
nD1 z

n=.�2n2/ con-
verges compactly in C. Hence,

Q1
nD1.1 � z

2=.�2n2// converges compactly in C
to an entire function. It follows that f .z/ D z

Q1
nD1.1 � z

2=.�2n2// is an entire
function, with f .z/ D 0 if and only if z D 0 or 1 � z2=.�2n2/ D 0 for some
n � 1. Equivalently, f .z/ D 0 if and only if z D n� for some integer n. All
zeros of f are simple because they occur as simple zeros of the factors z and
1 � z2=.�2n2/ D .1 � z=.�n//.1C z=.�n//.

(ii) Show that sin z=f .z/ has removable singularities at every �n, so it is an entire function
with no zeros. Conclude that for some entire function g,

(1) sin z D eg.z/ z
1Y
nD1

�
1 �

z2

�2n2

�
:
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Since sin z also has simple zeros precisely at the integer multiples of � , the meromorphic
function sin z=f .z/ has removable singularities at the �n, so it extends to a non-
vanishing entire function. Since C is simply connected, we can write this entire function
as exp.g/ for some g 2 O.C/ which is unique up to addition of an integer multiple of
2�i . This proves (1).

(iii) Use logarithmic differentiation to show that

(2) cot z D g0.z/C
1

z
C

1X
nD1

�
1

z � �n
C

1

z C �n

�
;

and hence

(3) g00.z/ D �
1

sin2 z
C

1X
nD�1

1

.z � �n/2
:

Show that the right hand side is invariant under the translation z 7! z C � , that is,
g00.z C �/ D g00.z/. Prove the estimate

(4) jg00.z/j �
1

sinh2 y
C 2

1X
nD0

1

.�2n2 C y2/
.z D x C iy/

provided that 0 � x � � . Use Liouville’s theorem to conclude that g00 D 0 and hence
g0 is constant.

By logarithmic differentiation of (1),

.sin z/0

sin z
D
.eg.z//0

eg.z/
C
1

z
C

1X
nD1

.1 � z2=.�2n2//0

1 � z2=.�2n2/
;

so

cot z D g0.z/C
1

z
C

1X
nD1

�2z

�2n2 � z2

D g0.z/C
1

z
C

1X
nD1

�
1

z � �n
C

1

z C �n

�
:

More precisely, this means that the sequence

cot z �
1

z
�

kX
nD1

�
1

z � �n
C

1

z C �n

�
converges compactly in C to the entire function g0 as k ! 1 (the principal parts of
cot z at z D �n eventually cancel out with those of the infinite series). Differentiating
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term-by-term, which is legitimate under compact convergence, we obtain

g00.z/ D .cot z/0 C
1

z2
C

1X
nD1

�
1

.z � �n/2
C

1

.z C �n/2

�
:

This is equivalent to (3). The function on the right side of (3) is invariant under the
translation z 7! z C � . This is trivial for the infinite series and also holds for the
term �1= sin2 z because sin.z C �/ D � sin z. Thus, g00 is �-periodic in the sense that
g00.z C �/ D g00.z/ for all z 2 C.

Note that if z D x C iy, then

j sin zj2 D
1

4
jeiz � e�izj2 �

1

4

ˇ̌
jeizj � je�izj

ˇ̌2
D
1

4
je�y � eyj2 D sinh2 y:

Moreover, if 0 � x � � , then jz � �nj2 D .x � �n/2 C y2 is bounded below by
�2n2 C y2 if n � 0 and by �2.n � 1/2 C y2 if n � 1. Applying these estimates to the
equation (3), we obtain (4).

Now jg00j is trivially bounded on the closed rectangle Œ0; �� � Œ�1; 1�. Since the
right hand side of (4) is bounded above by 1= sinh2.1/C .2=�2/

P1
nD1 n

�2 for jyj � 1,
it follows that jg00j is bounded on the strip Œ0; �� � .�1;C1/ and hence on C by
�-periodicity. Liouville’s theorem then implies g00 is constant. Since g00.x C iy/! 0

as jyj ! C1 by (4), we must have g00 D 0. Hence g0 is constant.

(iv) The right hand side of (2) is an odd function. Show that this gives g0 D 0, so g is
constant. Use (ii) to conclude that g D 0.

The first claim is clear because cot z is odd. Since 1=z and the infinite series in (2) are
also odd, the same must be true of g0. But the only constant odd function is zero, hence
g0 D 0 and g is constant. By (1),

eg.0/ D lim
z!0

sin z
z
D 1;

so exp.g.z// D exp.g.0// D 1 for all z 2 C. After adding an integer multiple of 2�i ,
we may arrange g D 0.

Problem 5. Use the results of the previous problem to calculate
1Y
nD1

�
1C

1

n2

�
and

1X
nD1

1

n2
:

Put z D i� in Euler’s product formula to get

sin.i�/ D i�
1Y
nD1

�
1C

1

n2

�
;
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or
e�� � e�

2i
D i�

1Y
nD1

�
1C

1

n2

�
;

or
1Y
nD1

�
1C

1

n2

�
D
e� � e��

2�
:

To find the infinite sum, we use the equation (3) in the previous problem. Since

sin2 z D z2
�
1 �

z2

6
CO.z4/

�2
D z2

�
1 �

z2

3
CO.z4/

�
as z ! 0, we have the Laurent series expansion

1

sin2 z
D

1

z2
C
1

3
CO.z2/

near z D 0. It follows from (3) that

0 D g00.z/ D �
1

3
CO.z2/C

1X
nD1

�
1

.z � �n/2
C

1

.z C �n/2

�
:

Letting z ! 0, we obtain

�
1

3
C

2

�2

1X
nD1

1

n2
D 0 or

1X
nD1

1

n2
D
�2

6
:

Problem 6. Use the identity sin.2x/ D 2 sin x cos x to show that
1Y
nD2

cos
� �
2n

�
D
2

�
:

Combine with the identity cos.2x/ D 2 cos2 x � 1 to deduce Veita’s formula (1579):

2

�
D

p
2

2
�

p
2C
p
2

2
�

q
2C

p
2C
p
2

2
� � �

We have

sin.2x/ D 2 sin x cos x

D 22 sin.x=2/ cos.x=2/ cos x

D 23 sin.x=4/ cos.x=4/ cos.x=2/ cos x
D � � �

D 2kC1 sin.x=2k/
kY
nD0

cos.x=2n/;
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so
kY
nD0

cos.x=2n/ D
sin.2x/

2kC1 sin.x=2k/
:

Substituting x D �=4 gives
kC2Y
nD2

cos.�=2n/ D
1

2kC1 sin.�=2kC2/
:

Since sin.�=2kC2/=.�=2kC2/! 1 or 2kC1 sin.�=2kC2/! �=2 as k !1, it follows that
1Y
nD2

cos.�=2n/ D
1

�=2
D
2

�
:

If we start with the value cos.�=4/ D
p
2=2 and use the identity

cos.x/ D

r
1C cos.2x/

2
;

we can inductively compute all the factors cos.�=2n/ in the above infinite product. For
example,

cos.�=8/ D

r
1C cos.�=4/

2
D

p
2C
p
2

2

cos.�=16/ D

r
1C cos.�=8/

2
D

q
2C

p
2C
p
2

2

and so on. Substituting these values into the above infinite product will give Veita’s formula.


