
Math 704 Problem Set 1
due Friday 2/7/2025

Problem 1. Prove the following form of Cauchy’s criterion for convergence of
infinite products: ∏∞

n=1 an converges if and only if for every ε > 0 there is an
integer N such that |∏k

n=m an − 1| < ε whenever k ≥ m ≥ N. (Hint: The “only if”
part is discussed in Remark 8.3. For the “if” part use logarithms.)

Problem 2. Consider a sequence {Cn}∞
n=1 of concentric circles of increasing radii.

For each n, the circle Cn is inscribed in a regular (n + 2)-gon and circumscribes a
regular (n + 1)-gon. Determine whether or not the radius of Cn tends to infinity as
n → ∞. (Hint: First verify the relation rn+1 = rn sec θn, where rn is the radius of Cn
and θn = π/(n + 2).)

Problem 3. Let f (z) = ∏∞
n=0(1 + z2n

).

(i) Show that the infinite product converges compactly in D, so f ∈ O(D).

(ii) Let pk(z) = ∏k
n=0(1 + z2n

). Show that pk(z) = (1 + z)pk−1(z2), and justify
the functional equation f (z) = (1 + z) f (z2).

(iii) Conclude that f (z) = 1/(1 − z).

(iv) What does the resulting identity

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · = 1 + z + z2 + z3 + · · ·
for |z| < 1 tell you about the binary expansion of integers?

Problem 4. In this exercise you will prove Euler’s product formula (1734):

sin z = z
∞

∏
n=1

(
1 − z2

π2n2

)
z ∈ C.

The proof is deliberately divided into small steps for more clarity.
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(i) Show that the above infinite product converges compactly in C to an entire
function f with a simple zero at πn for every n ∈ Z, and with no other
zeros.

(ii) Show that sin z/ f (z) has removable singularities at every πn, so it is an
entire function with no zeros. Conclude that for some entire function g,

sin z = eg(z) z
∞

∏
n=1

(
1 − z2

π2n2

)
.

(iii) Use logarithmic differentiation to show that

cot z = g′(z) +
1
z
+

∞

∑
n=1

(
1

z − πn
+

1
z + πn

)
,

and hence

g′′(z) = − 1
sin2 z

+
∞

∑
n=−∞

1
(z − πn)2 .

Show that the right hand side is invariant under the translation z 7→ z + π,
that is, g′′(z + π) = g′′(z). Prove the estimate

|g′′(z)| ≤ 1
sinh2 y

+ 2
∞

∑
n=0

1
(π2n2 + y2)

(z = x + iy)

provided that 0 ≤ x ≤ π. Use Liouville’s theorem to conclude that g′′ = 0
and hence g′ is constant.

(iv) The right hand side of the first identity in (iii) is an odd function. Show that
this gives g′ = 0, so g is constant. Use (ii) to conclude that g = 0.

Problem 5. Use the results of the previous problem to calculate
∞

∏
n=1

(
1 +

1
n2

)
and

∞

∑
n=1

1
n2 .

Problem 6. Use the identity sin(2x) = 2 sin x cos x to show that
∞

∏
n=2

cos
( π

2n

)
=

2
π

.

Combine with the identity cos(2x) = 2 cos2 x − 1 to deduce Veita’s formula (1579):

2
π

=

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
· · ·


