Math 320 Midterm 2 Review Sheet November 5, 2025

The second midterm will be on Thursday 11/13 during your usual lecture time. It has four problems and is 90 minutes long. Here is a list of the topics that the exam is based on. Learn the important definitions; you may be asked to state some. In addition to your lecture notes and relevant sections in the textbook, it would be a good idea to review the practice problems and solutions posted on the course webpage.

Topology on \mathbb{R}

interior, closure and boundary of a set; open and closed sets; compact sets; Heine-Borel theorem: A subset of $\mathbb R$ is compact if and only if it is bounded and closed; Bolzano-Weierstrass theorem: Every bounded infinite subset of $\mathbb R$ has an accumulation point.

Sequences

definition of the limit of a sequence; convergent sequences are bounded; algebraic rules of limits; the squeeze theorem; monotone sequences: an increasing (resp. decreasing) sequence which is bounded above (resp. below) is convergent; definition of $\lim_{n\to\infty} x_n = +\infty$ or $-\infty$; Cauchy sequences; a sequence in $\mathbb R$ is convergent if and only if it is a Cauchy sequence; subsequences; $\{x_n\}$ converges to L if and only if every subsequence of $\{x_n\}$ converges to L; every bounded sequence has a convergent subsequence (variant of the Bolzano-Weierstrass theorem).

Continuity

limit of a function at a point; sequential criterion for the existence of limit; algebraic rules of limits of functions; one-sided limits; ε - δ definition of continuity; two conditions equivalent to continuity of $f:D\to\mathbb{R}$ at $c\in D$: (i) for every sequence $\{x_n\}$ in D, if $x_n\to c$ then $f(x_n)\to f(c)$, and (ii) for every neighborhood V of f(c) there is a neighborhood U of c such that $f(U\cap D)\subset V$; sums, products, quotients, and compositions of continuous functions are continuous.

Global properties of continuous functions

 $f:D\to\mathbb{R}$ is continuous (everywhere) if and only if for every open set B there is an open set A such that $f^{-1}(B)=A\cap D$; in particular, if the domain D itself is open, $f:D\to\mathbb{R}$ is continuous if and only if for every open set B the preimage $f^{-1}(B)$ is open; if $f:D\to\mathbb{R}$ is continuous and $K\subset D$ is compact, then f(K) is compact; the extreme value theorem: a continuous function defined on a compact set assumes its maximum and minimum values; the intermediate value theorem: If $f:[a,b]\to\mathbb{R}$ is continuous and $K\in\mathbb{R}$ is any number between K0 and K1, then there is a K2 is any number between K3 and K4.

Practice problems

- 1. True or false? Give a brief proof or a counterexample.
 - (i) If the sequences $\{x_n\}$ and $\{x_n y_n\}$ are convergent, so is $\{y_n\}$.
 - (ii) If $f: D \to \mathbb{R}$ is a continuous function, so is $|f|: D \to \mathbb{R}$ (as usual, |f| denotes the function which takes the value |f(x)| at each input x).
 - (iii) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $f(x) \in \mathbb{Q}$ for every $x \in \mathbb{R}$, then f is a constant function.
- 2. Use the definition of limit to prove the following:

(i)
$$\lim_{n\to\infty} \frac{\sqrt{n}}{n+1} = 0.$$

(ii)
$$\lim_{x \to 2} (2x^2 + 3) = 11$$
.

- 3. Suppose we have a sequence $\{x_n\}$ of real numbers such that the subsequences $\{x_{2k}\}$ and $\{x_{2k-1}\}$ both converge to L as $k \to \infty$. Show that $\lim_{n \to \infty} x_n = L$.
- 4. Define a sequence $\{x_n\}$ by $x_1 = 0$ and $x_{n+1} = x_n/2 1$ for $n \ge 1$. Show that $\lim_{n \to \infty} x_n$ exists and find its value.
- 5. Suppose a function $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x)| \le \sqrt{|x|}$ for all $x \in \mathbb{R}$. Using the ε - δ definition of continuity, show that f is continuous at 0.
- 6. Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function. Show that the range f([a, b]) is a closed interval.
- 7. Show that every continuous function $f:[0,1] \to [0,1]$ must have a *fixed point*, i.e., a point $c \in [0,1]$ such that f(c) = c. Interpret this result geometrically. (Hint: Assuming c = 0 or c = 1 are not fixed points, look at the function g(x) = f(x) x.)