Math 310 Midterm 1 Review Sheet

9/30/2025

The first midterm will be on Thursday 10/9 during your usual lecture time. It has four problems and is 90 minutes long. Here is a list of the topics that the exam is based on. Learn the important definitions; you may be asked to state some. In addition to your lecture notes and relevant sections in the textbook, it would be a good idea to review the practice problems and solutions posted on the course webpage.

Logic and techniques of proof

Quantifiers \forall and \exists ; quantified statements and their negation; proof by contradiction and by counterexample; mathematical induction

Set theory

Sets and subsets; equality of sets; the empty set; unions and intersections; the complement A^c and the difference $A \setminus B = A \cap B^c$; De Morgan's laws; Cartesian products

Functions

Domain, co-domain and range; the image and preimage of a set under a function; surjective (=onto) functions; injective (=one-to-one) functions; bijective functions; the inverse function; composition of two functions

The real number system \mathbb{R}

 $\mathbb R$ as an ordered field; the absolute value |x| and its basic properties; supremum and infimum of a set; the completeness axiom; density of rationals and irrationals in $\mathbb R$: Every interval in $\mathbb R$ contains infinitely many rationals and infinitely many irrationals

Topology of \mathbb{R}

The *r*-neighborhood of *x* is $N(x,r) = \{t \in \mathbb{R} : |t-x| < r\} = (x-r,x+r)$.

For a set $S \subset \mathbb{R}$,

- $x \in S$ is an *interior point* of S if there is a neighborhood N(x,r) such that $N(x,r) \subset S$. The set of all interior points of S is called the *interior* of S and is denoted by int(S).
- $x \in \mathbb{R}$ is an *accumulation point* of S if every neighborhood N(x,r) contains some point of S other than x. Equivalently, if every neighborhood N(x,r) contains infinitely many points of S. The set of all accumulation points of S is called the *accumulation set* of S and is denoted by S'.
- the *closure* of *S* is the set $cl(S) = S \cup S'$. In other words,

 $cl(S) = \{x \in \mathbb{R} : \text{every neighborhood } N(x, r) \text{ contains some point of } S\}$

- $x \in \mathbb{R}$ is a boundary point of S if every neighborhood N(x,r) contains some point of S and some point of S^c . The set of all boundary points of S is called the boundary of S and is denoted by bd(S).
- *S* is *open* if S = int(S), i.e., if every point of *S* is an interior point of *S*.
- *S* is closed if S = cl(S), i.e., if every accumulation point of *S* belongs to *S*.
- *S* is *compact* if every open cover of *S* has a finite subcover.

Moreover, we have the following facts:

- $\operatorname{int}(S) \subset S \subset \operatorname{cl}(S)$.
- $\operatorname{cl}(S) = \operatorname{int}(S) \cup \operatorname{bd}(S)$.
- S is open $\iff S^c$ is closed.
- Arbitrary unions and finite intersections of open sets are open. Arbitrary intersections and finite unions of closed sets are closed.
- *S* is compact \iff *S* is bounded and closed (Heine-Borel Theorem).

Practice Problems

- 1. Use proof by contradiction to show that (i) is true. Give a counterexample to show that (ii) is false.
 - (i) $\sqrt{2} + \sqrt{3} > \sqrt{8}$.
 - (ii) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : |x| + |y| \le 10.$
- 2. Guess a formula for the sum

$$1+3+5+\cdots+(2n-1)$$

of the first *n* odd numbers and prove it by induction.

- 3. Let $f: A \to B$ be a function. Show that for any subsets S, T of B, we have $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$. Show however that for $S, T \subset A$, the relation $f(S \cap T) = f(S) \cap f(T)$ may not be true. (Hint for the second part: Look at the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.)
- 4. Let A be the set of all continuous functions $f: [-1,1] \to [0,1]$. Consider the integration function $I: A \to \mathbb{R}$ defined by $I(f) = \int_0^1 f(x) \, dx$. Describe the range of I. Is I surjective? Is it injective?
- 5. Let $S \subset \mathbb{R}$ be non-empty and bounded. We know that in general $\sup(S)$ and $\inf(S)$ may not belong to S. Show however that $\sup(S)$ and $\inf(S)$ always belong to the closure $\operatorname{cl}(S)$. Conclude that if S is non-empty and compact, $\sup(S)$ and $\inf(S)$ exist and both belong to S. In other words, a compact subset of \mathbb{R} has a maximum and a minimum element.
- 6. For each set S, describe int(S), cl(S), and bd(S). Determine if S is open, closed, compact, or none:

- $S = [-1,0) \cup (0,1]$
- $S = \{1/n : n \in \mathbb{N}\}$
- $S = \mathbb{N}$
- $\bullet S = \{ x \in \mathbb{R} : |x \sqrt{2}| \le 1 \}$
- $S = [0,1] \cap \mathbb{Q}$