Math 310 Problem Set 10

11/20/2025

1. Let f be differentiable and f(0) = 1. If $|f'(x)| \le 1/2$ for all x, how large or small can f(3) be?

2. Let f,g be differentiable on $[0,+\infty)$, with f(0)=g(0). If $f'(x) \leq g'(x)$ for all x>0, show that $f(x)\leq g(x)$ for all x>0. (Physical interpretation: For two race cars starting at the same position, the car with the greater speed will always remain ahead.)

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function that satisfies

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
 for all $x, y \in \mathbb{R}$.

Here C>0 and $\alpha>1$ are fixed real numbers. Prove that f must be a constant function. (Hint: Show that f'(x)=0 for all $x\in\mathbb{R}$.)

4. Let f be continuous on [3,5] and differentiable in (3,5). Suppose f(3)=6 and f(5)=10. Show that for some $c\in(3,5)$ the tangent line to the graph of f at (c,f(c)) passes through the origin. (Hint: Consider g(x)=f(x)/x.)

5. Find the following limits:

$$\bullet \lim_{x \to 0} \frac{\sin(x^2)}{1 - \cos x}$$

•
$$\lim_{x \to e} \frac{\log x - 1}{x}$$

$$\bullet \lim_{x \to 0} \frac{\tan x - x}{x^3}$$

$$\bullet \lim_{x \to 0} (1 + ax)^{1/x}$$