Math 310 Problem Set 7

10/23/2025

1. Let *a* and *b* be positive numbers. Show that

$$\lim_{n\to\infty} (a^n + b^n)^{\frac{1}{n}} = \max\{a, b\}.$$

(Hint: Set $x_n = (a^n + b^n)^{1/n}$ and without loss of generality assume $a \le b$. Verify that $b \le x_n \le 2^{1/n} b$ and apply the squeeze theorem.)

- 2. True for false? Give a brief proof or a counterexample.
 - There is an unbounded sequence in \mathbb{R} which has a subsequence converging to 0.
 - There is a sequence in \mathbb{R} which has three subsequences converging to -1, 0, and 5.
 - The sequence $\{2^{\cos n}\}$ has a convergent subsequence.
- **3.** Let *S* be a non-empty subset of \mathbb{R} .
 - (i) Show that $x \in cl(S)$ if and only if there is a sequence $\{x_n\}$ in S such that $x_n \to x$.
 - (ii) Conclude that S is closed if and only if for every sequence $\{x_n\}$ in S with $x_n \to x$, the limit x is also in S.
- **4.** Use the *definition* of limit to prove the following statements:

(i)
$$\lim_{x \to 1} (x^2 - 4x) = -3$$

(ii)
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0.$$

(Hint for (ii): Use the fact that $|\sin \theta| \le 1$ for all θ .)

5. Find the following limits or justify that the limit does not exist:

(i)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

(ii)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x + 3x^2} \right)$$

(iii) $\lim_{x \to c} \lfloor x \rfloor$ (here $\lfloor x \rfloor$ denotes the integer part of the real number x).