Math 310 Problem Set 4

9/18/2025

Recap: For a given set $S \subset \mathbb{R}$,

• the *interior* of *S* is

$$int(S) = \{x \in S : \text{ some neighborhood of } x \text{ is contained in } S\}$$

• the *accumulation set* of *S* is

$$S' = \{x \in \mathbb{R} : \text{every neighborhood of } x \text{ contains some point of } S \text{ other than } x\}$$

= $\{x \in \mathbb{R} : \text{every neighborhood of } x \text{ contains infinitely many points of } S\}$

• the *closure* of *S* is

$$cl(S) = S \cup S'$$

= $\{x \in \mathbb{R} : \text{every neighborhood of } x \text{ contains some point of } S\}$

Thus,

$$int(S) \subset S \subset cl(S)$$
.

- *S* is called *open* if S = int(S).
- *S* is called closed if $S = \operatorname{cl}(S)$
- *S* is *compact* if every open cover of *S* has a finite subcover.

Moreover, we have the following facts:

- *S* is open \iff $S^c = \mathbb{R} \setminus S$ is closed.
- Arbitrary unions and finite intersections of open sets are open. Arbitrary intersections and finite unions of closed sets are closed.
- S is compact \iff S is bounded and closed (Heine-Borel Theorem).
- 1. In each case, determine whether the set is open, closed, compact, or none:
 - (i) $[-1,1] \cup \{2\}$

(ii)
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n+1}, \frac{1}{n} \right)$$

- (iii) $\{x \in \mathbb{R} : \sin x \ge 0\}$
- (iv) $\{x \in (0,1) : x \text{ is irrational}\}$
- **2.** The *boundary* of a set $S \subset \mathbb{R}$ is defined as

 $bd(S) = \{x \in \mathbb{R} : \text{every neighborhood of } x \text{ contains points of both } S \text{ and } S^c\}.$

For example, $bd([a,b]) = bd((a,b)) = \{a,b\}$ and $bd(\mathbb{Q}) = \mathbb{R}$. Find int(S), S', cl(S) and bd(S) for each set S in problem 1.

3. Show that for every set $S \subset \mathbb{R}$,

$$\operatorname{cl}(S) = \operatorname{int}(S) \cup \operatorname{bd}(S).$$

(Hint: The inclusion $\operatorname{int}(S) \cup \operatorname{bd}(S) \subset \operatorname{cl}(S)$ is trivial, so you just need to prove $\operatorname{cl}(S) \subset \operatorname{int}(S) \cup \operatorname{bd}(S)$.)

- **4.** True or false? Give a short proof or a counterexample.
 - (i) If *S* is not open, then *S* is closed.
 - (ii) If *S* is open and *T* is closed, then $S \setminus T$ is open.
 - (iii) If *S* and *T* are compact, so is $S \cup T$.
- **5.** For any set $S \subset \mathbb{R}$, show that int(S) is open and cl(S) is closed by completing the following sketch:

To prove $int(S)$ is open, we need to check that every $x \in [$		is an interior
point of int(S). We know there is a neighborhood $(x - r, x^T)$	+r) co	ontained in <i>S</i> .
For every $y \in (x - r, x + r)$, let $c > 0$ be a number	than	the distances
between y and the points $x - r$ and $x + r$. Then	\subset $(x -$	$(r,x+r)\subset S$
which shows $y \in \text{int}(S)$. This proves $(x - r, x + r) \subset \square$, fro	om which we
conclude that x is an interior point of $int(S)$.		

To prove $\operatorname{cl}(S)$ is closed, we need to check that every accumulation point x of $\operatorname{cl}(S)$ belongs to \square . Take an arbitrary neighborhood (x-r,x+r). We know that (x-r,x+r) contains a point $y\in \square$ other than x. As before, we can find a small enough c>0 such that $(y-c,y+c)\subset \square$. Since $y\in\operatorname{cl}(S)$, the neighborhood (y-c,y+c) contains some point of \square . Thus, $(x-r,x+r)\cap S\neq \emptyset$. This proves that every neighborhood of x meets S, i.e., $x\in\operatorname{cl}(S)$.