Math 310 Problem Set 3

9/11/2025

- **1.** Let **F** be an ordered field. Use the axioms to verify the following statements:
 - (i) 1 > 0.
 - (ii) $\forall x \in \mathbb{F}, x > 0 \iff -x < 0.$
 - (iii) $\forall x \in \mathbb{F}, x > 0 \iff 1/x > 0.$
 - (iv) $\forall x, y \in \mathbb{F}$, $0 < x < y \Longrightarrow 0 < 1/y < 1/x$.
 - (v) $\forall x, y, z \in \mathbb{F}$, $(x < y \text{ and } z < 0) \Longrightarrow xz > yz$.
 - (vi) $\forall x \in \mathbb{F}, x^2 + 1 > 0$.

(Those of you familiar with the field \mathbb{C} of complex numbers will notice that (vi) shows \mathbb{C} cannot be made into an ordered field, since $i^2 + 1 = 0$.)

2. Show that for all real numbers *x* and *y*,

$$||x| - |y|| \le |x - y|.$$

This says that the distance between |x| and |y| is no more than the distance between x and y. (Hint: You need to check the inequalities $-|x-y| \le |x| - |y| \le |x-y|$. Both follow from the triangle inequality $|a+b| \le |a| + |b|$ for suitable choices of a and b.)

- **3.** In each case, find all the upper bounds (if any) and the least upper bound of $S \subset \mathbb{R}$:
 - $S = \{a, b, c\}$, where a > b > c
 - $S = \{n + (-1)^n : n \in \mathbb{N}\}$
 - $S = \{x \in [0, \sqrt{10}] : x \text{ is rational}\}$
 - $S = \{-\frac{3}{n} : n \in \mathbb{N}\}$
- **4.** Are the following statements true or false? Justify your answers by a brief proof or counterexample.
 - If $\sup(S) = \sup(T)$ and $\inf(S) = \inf(T)$, then S = T.
 - If $a = \inf(S)$ and a < a', then there is an $x \in S$ such that a < x < a'.
 - If *b* is an upper bound for *S* and $b \in S$, then $b = \sup(S)$.
 - If S, T are bounded and $S \subset T$, then $\sup(S) \leq \sup(T)$ and $\inf(S) \geq \inf(T)$.
- **5.** The field \mathbb{R} of real numbers has the *Archimedean property (AP)*, which can be formulated as follows:

"For every real number x > 0, there exists an $n \in \mathbb{N}$ such that n > x."

This looks ridiculously obvious, but only because we are so used to our intuition of numbers that we just take it for granted. Amazingly, there are (incomplete)

ordered fields in which this property fails. The following outline shows that (AP) is a consequence of the completeness axiom for \mathbb{R} . Fill in the blanks:				
Suppose (AP) fails. Then we can find som	e ;	such that [for all
$n \in \mathbb{N}$. In other words, the real number x	is an		for \mathbb{N} .	By the
, $\mathbb N$ must have the least upper bound $b \in \mathbb R$. Now the number				
$b-1$ cannot be an upper bound for $\mathbb N$ because	se	, so there	must be	$an n \in$
N such that But this impli	es	wł	nich cont	tradicts
the definition of $b = \sup(\mathbb{N})$. This contradic	tion shows t	that (\overline{AP}) n	nust hold	1 .