Math 310 Problem Set 2

9/4/2025

- **1.** Let *A*, *B*, *C* be sets.
 - (i) Under what condition does the equality $A \setminus (A \setminus B) = B$ hold? Guess the answer using a diagram and then prove it carefully.
 - (ii) Show that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- **2.** Find the following union and intersection of intervals:

$$\bigcup_{n=1}^{\infty} \left(0, 1 - \frac{1}{n}\right) \quad \text{and} \quad \bigcap_{n=1}^{\infty} \left(0, 1 + \frac{1}{n}\right).$$

- **3.** Recall that the Cartesian product $\mathbb{Z} \times \mathbb{Z}$ is the set of all ordered pairs (m, n) where both m and n are integers. Let $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be the function defined by $f(n) = (n^2, n)$. Is f injective (one-to-one)? Is it surjective (onto)?
- **4.** Let S be the set of all polynomials of the form $p(x) = ax^2 + bx + c$ and T be the set of all polynomials of the form q(x) = rx + s. Here the coefficients a, b, c, r, s can be any real numbers. Let $D: S \to T$ be the "differentiation" mapping defined by D(p(x)) = p'(x). Is D injective? Is it surjective? What is the preimage $D^{-1}(\{x\})$?
- **5.** Suppose $f: A \to B$ and $g: B \to C$ are functions such that the composition $g \circ f: A \to C$ is injective. Is f necessarily injective? What about g? Justify your answers by a proof or counterexample.