Math 231 Final Review Sheet, 5/9/2025

The final exam will be on Thursday 5/22 from 1:45 to 3:45PM in Kiely 320. It has five problems (one being a few multiple-choice questions) and is 110 minutes long. You may use a calculator for basic arithmetic although it won't be something you need. *You are not allowed to use any built-in linear algebra packages on a calculator.* Below is a list of the topics that you are advised to study.

Earlier and background material:

- Vectors in \mathbb{R}^n ; vector addition and scalar multiplication; the dot product and its basic properties; norm and distance; the angle between two vectors
- Solving systems of linear equations by elimination; reducing matrices to row echelon forms; leading and free variables
- The row space, column space and null space of a matrix; finding bases for these spaces by reducing to row echelon forms; rank and nullity of a matrix; the rank plus nullity theorem for matrices
- Evaluating det(*A*) by the cofactor expansion formula; basic properties of the determinant; *A* is invertible if and only if det(*A*) ≠ 0

More recent material that you should mostly focus on:

- Orthogonal vectors in ℝⁿ; the orthogonal complement W[⊥] of a subspace W; the relation (row(A))[⊥] = null(A) and its application in finding bases for orthogonal complements; orthogonal and orthonormal bases
- The orthogonal projection theorem: If *W* is a subspace of ℝⁿ, every v ∈ ℝⁿ can be decomposed uniquely as v = p + q where p ∈ W and q ∈ W[⊥]. Moreover, if we choose an orthogonal basis {u₁,..., u_k} for *W*, we can find p, q as follows:

$$\mathbf{p} = \mathbf{proj}_W \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 + \dots + \frac{\mathbf{v} \cdot \mathbf{u}_k}{\|\mathbf{u}_k\|^2} \mathbf{u}_k$$
$$\mathbf{q} = \mathbf{perp}_W \mathbf{v} = \mathbf{v} - \mathbf{p}.$$

- General vector spaces; basic examples: \mathbb{R}^n , $\mathcal{M}_{m,n}$, \mathcal{F} , \mathcal{P}_n ; subspaces of vector spaces; the span of a set of vectors; linear dependence and independence
- Definition of a basis for a vector space; coordinates of a vector relative to a basis; definition of dimension;

$$\dim(\mathbb{R}^n) = n$$
 $\dim(\mathcal{M}_{m,n}) = mn$ $\dim(\mathcal{P}_n) = n+1$

• Suppose $\dim(V) = n$.

(i) Any linearly independent set in V has at most n vectors. If it has exactly n vectors, it is a basis for V. If it has less than n vectors, it can be enlarged to a basis for V.

(ii) Any spanning set for *V* has at least *n* vectors. If it has exactly *n* vectors, it is a basis for *V*. If it has more than *n* vectors, it can be reduced to a basis for *V*.

- Linear maps between vector spaces; linear maps are uniquely determined by their action on basis vectors; every linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ is of the form T(x) = Ax for an $m \times n$ matrix A whose *columns* are the vectors $T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)$; composition of two such linear maps corresponds to multiplication of their matrices
- Basic examples of linear maps $\mathbb{R}^2 \to \mathbb{R}^2$ coming from geometry
- Kernel and range of a linear map; the rank plus nullity theorem: If $T: V \rightarrow W$ is a linear map, then

$$\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V).$$

Practice problems

1. Consider the subspace
$$W = \text{span} \left\{ \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$$
 of \mathbb{R}^3 .

(i) Find a basis for
$$W^{\perp}$$
.
(ii) If $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, find $\mathbf{p} = \mathbf{proj}_W(\mathbf{v})$ and $\mathbf{q} = \mathbf{perp}_W(\mathbf{v})$.

2. Give bases for the spaces

$$V = \{p(x) \in \mathcal{P}_2 : p(0) = p'(0) = 0\}$$
$$W = \{p(x) \in \mathcal{P}_2 : \int_0^1 p(x) \, dx = 0\}$$

and use them to find $\dim(V)$ and $\dim(W)$.

3. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map that satisfies

$$T\begin{bmatrix} -1\\1\end{bmatrix} = \begin{bmatrix} 1\\3\\1\end{bmatrix}$$
 and $T\begin{bmatrix} 0\\2\end{bmatrix} = \begin{bmatrix} 5\\0\\-4\end{bmatrix}$.

Find a formula for $T\begin{bmatrix} x \\ y \end{bmatrix}$. What is the standard matrix of *T*?

4. Consider the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by the reflection in the *x*-axis followed by the 30° counterclockwise rotation around the origin. Find a formula for *T*.

5. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection on the line y = mx. Use the projection formula to show that the standard matrix of *T* is

$$\begin{bmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{m^2}{1+m^2} \end{bmatrix}$$
6. Let $T: \mathcal{M}_{2,2} \to \mathbb{R}^3$ be the linear map defined by $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a \\ b+c \\ d \end{bmatrix}$.

- (i) Describe ker(T) and range(T).
- (ii) Find nullity(T) and rank(T) and verify that the rank plus nullity theorem holds.
- 7. True or false?
 - The vectors

$$\mathbf{v}_1 = \begin{bmatrix} 4\\0\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -1\\1\\2 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\5\\-2 \end{bmatrix}$$

form an orthogonal basis for \mathbb{R}^3 .

- If $V = \{A \in \mathcal{M}_{2,2} : A = -A^T\}$, then dim(V) = 2.
- There are 5 linearly independent polynomials in \mathcal{P}_3 .
- There is a linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$ with the property ker $(T) = \{\mathbf{0}\}$.